These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17492367)

  • 1. Visualization of arginine influx into plant cells using a specific FRET-sensor.
    Bogner M; Ludewig U
    J Fluoresc; 2007 Jul; 17(4):350-60. PubMed ID: 17492367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET-based nanosensors for monitoring and quantification of alcohols in living cells.
    Soleja N; Manzoor O; Nandal P; Mohsin M
    Org Biomol Chem; 2019 Feb; 17(9):2413-2422. PubMed ID: 30735222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease.
    Kimura RH; Steenblock ER; Camarero JA
    Anal Biochem; 2007 Oct; 369(1):60-70. PubMed ID: 17586456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer.
    Basak S; Sakia N; Dougherty L; Guo Z; Wu F; Mindlin F; Lary JW; Cole JL; Ding F; Bowen ME
    J Mol Biol; 2021 Mar; 433(5):166793. PubMed ID: 33388290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy.
    Vermeer JE; Van Munster EB; Vischer NO; Gadella TW
    J Microsc; 2004 May; 214(Pt 2):190-200. PubMed ID: 15102066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
    Mohsin M; Abdin MZ; Nischal L; Kardam H; Ahmad A
    Biosens Bioelectron; 2013 Dec; 50():72-7. PubMed ID: 23835220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering.
    Deuschle K; Okumoto S; Fehr M; Looger LL; Kozhukh L; Frommer WB
    Protein Sci; 2005 Sep; 14(9):2304-14. PubMed ID: 16131659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy.
    Navarro-Borelly L; Somasundaram A; Yamashita M; Ren D; Miller RJ; Prakriya M
    J Physiol; 2008 Nov; 586(22):5383-401. PubMed ID: 18832420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
    Seidel T; Golldack D; Dietz KJ
    FEBS Lett; 2005 Aug; 579(20):4374-82. PubMed ID: 16061227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
    Lummer M; Humpert F; Wiedenlübbert M; Sauer M; Schüttpelz M; Staiger D
    Mol Plant; 2013 Sep; 6(5):1518-30. PubMed ID: 23434876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators.
    Imamura H; Nhat KP; Togawa H; Saito K; Iino R; Kato-Yamada Y; Nagai T; Noji H
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15651-6. PubMed ID: 19720993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET imaging of diatoms expressing a biosilica-localized ribose sensor.
    Marshall KE; Robinson EW; Hengel SM; Paša-Tolić L; Roesijadi G
    PLoS One; 2012; 7(3):e33771. PubMed ID: 22470473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of fluorescent proteins as reporters.
    Jach G
    Methods Mol Biol; 2006; 323():275-91. PubMed ID: 16739585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.
    Hanna DA; Martinez-Guzman O; Reddi AR
    Biochemistry; 2017 Apr; 56(13):1815-1823. PubMed ID: 28316240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time detection of caspase-3-like protease activation in vivo using fluorescence resonance energy transfer during plant programmed cell death induced by ultraviolet C overexposure.
    Zhang L; Xu Q; Xing D; Gao C; Xiong H
    Plant Physiol; 2009 Aug; 150(4):1773-83. PubMed ID: 19535476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.