These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17492435)

  • 1. Biophysical effects of electric fields on membrane water interfaces: a mini review.
    Teissie J
    Eur Biophys J; 2007 Nov; 36(8):967-72. PubMed ID: 17492435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional properties of hydration and confined water in membrane interfaces.
    Disalvo EA; Lairion F; Martini F; Tymczyszyn E; Frías M; Almaleck H; Gordillo GJ
    Biochim Biophys Acta; 2008 Dec; 1778(12):2655-70. PubMed ID: 18834854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane perturbation by an external electric field: a mechanism to permit molecular uptake.
    Escoffre JM; Dean DS; Hubert M; Rols MP; Favard C
    Eur Biophys J; 2007 Nov; 36(8):973-83. PubMed ID: 17576550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics.
    Nandi PK; Futera Z; English NJ
    J Chem Phys; 2016 Nov; 145(20):205101. PubMed ID: 27908109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biophysical foundations in the application of electromagnetic fields in the modification of osteogenesis].
    Werhahn C
    Z Orthop Ihre Grenzgeb; 1991; 129(1):118-25. PubMed ID: 1826383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces.
    Lösche M; Piepenstock M; Diederich A; Grünewald T; Kjaer K; Vaknin D
    Biophys J; 1993 Nov; 65(5):2160-77. PubMed ID: 8298041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroporation of the photosynthetic membrane: structural changes in protein and lipid-protein domains.
    Rosemberg Y; Rotenberg M; Korenstein R
    Biophys J; 1994 Sep; 67(3):1060-6. PubMed ID: 7811916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of the effect of weak electromagnetic fields on the living body].
    Sidorenko VM
    Biofizika; 2001; 46(3):500-4. PubMed ID: 11449551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The redox properties of cytochromes b imposed by the membrane electrostatic environment.
    Krishtalik LI; Tae GS; Cherepanov DA; Cramer WA
    Biophys J; 1993 Jul; 65(1):184-95. PubMed ID: 8396453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium behavior in supported lipid membranes containing cholesterol.
    Stottrup BL; Veatch SL; Keller SL
    Biophys J; 2004 May; 86(5):2942-50. PubMed ID: 15111410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydration of noncharged lipid bilayer membranes. Theory and experiments with phosphatidylethanolamines.
    Cevc G; Marsh D
    Biophys J; 1985 Jan; 47(1):21-31. PubMed ID: 3978186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of cellular membrane in alternating electric field.
    Pawłowski P; Fikus M
    Biophys J; 1993 Jul; 65(1):535-40. PubMed ID: 8369457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces.
    Gawrisch K; Ruston D; Zimmerberg J; Parsegian VA; Rand RP; Fuller N
    Biophys J; 1992 May; 61(5):1213-23. PubMed ID: 1600081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S; Fanani ML; Maggio B
    Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane hydration correlates to cellular biophysics during freezing in mammalian cells.
    Balasubramanian SK; Wolkers WF; Bischof JC
    Biochim Biophys Acta; 2009 May; 1788(5):945-53. PubMed ID: 19233120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water defects induced by expansion and electrical fields in DMPC and DMPE monolayers: contribution of hydration and confined water.
    Almaleck H; Gordillo GJ; Disalvo A
    Colloids Surf B Biointerfaces; 2013 Feb; 102():871-8. PubMed ID: 23104041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydration of model membranes induced by lectins from Ricinus communis and Viscum album.
    Pohl P; Saparov SM; Pohl EE; Evtodienko VY; Agapov II; Tonevitsky AG
    Biophys J; 1998 Dec; 75(6):2868-76. PubMed ID: 9826608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid monolayers on Hg as a valid experimental model for lipid membranes under electrical fields.
    Almaleck SH; Lairion F; Disalvo EA; Gordillo GJ
    Chem Phys Lipids; 2006 Feb; 139(2):150-6. PubMed ID: 16417903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid membranes with free edges.
    Tu ZC; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061915. PubMed ID: 14754242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.