These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 17492478)

  • 61. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hazardous ions uptake behavior of thermally activated steel-making slag.
    Jha VK; Kameshima Y; Nakajima A; Okada K
    J Hazard Mater; 2004 Oct; 114(1-3):139-44. PubMed ID: 15511584
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Migration behavior of landfill leachate contaminants through alternative composite liners.
    Varank G; Demir A; Top S; Sekman E; Akkaya E; Yetilmezsoy K; Bilgili MS
    Sci Total Environ; 2011 Aug; 409(17):3183-96. PubMed ID: 21621822
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Adsorption intrinsic kinetics and isotherms of lead ions on steel slag.
    Liu SY; Gao J; Yang YJ; Yang YC; Ye ZX
    J Hazard Mater; 2010 Jan; 173(1-3):558-62. PubMed ID: 19766391
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
    Chatterjee SK; Bhattacharjee I; Chandra G
    J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.
    Mattila HP; Zevenhoven R
    ChemSusChem; 2014 Mar; 7(3):903-13. PubMed ID: 24578147
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.
    Navarro C; Díaz M; Villa-García MA
    Environ Sci Technol; 2010 Jul; 44(14):5383-8. PubMed ID: 20568743
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Removal of phosphate from aqueous solution with blast furnace slag.
    Oguz E
    J Hazard Mater; 2004 Oct; 114(1-3):131-7. PubMed ID: 15511583
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process.
    Kim EH; Lee DW; Hwang HK; Yim S
    Chemosphere; 2006 Apr; 63(2):192-201. PubMed ID: 16213546
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molybdate adsorption from steel slag eluates by subsoils.
    Matern K; Rennert T; Mansfeldt T
    Chemosphere; 2013 Nov; 93(9):2108-15. PubMed ID: 23973286
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evaluation of environmental compatibility of EAFD using different leaching standards.
    Sebag MG; Korzenowski C; Bernardes AM; Vilela AC
    J Hazard Mater; 2009 Jul; 166(2-3):670-5. PubMed ID: 19223119
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI).
    Aberg A; Kumpiene J; Ecke H
    Sci Total Environ; 2006 Feb; 355(1-3):1-12. PubMed ID: 15893365
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach.
    Chaurand P; Rose J; Briois V; Olivi L; Hazemann JL; Proux O; Domas J; Bottero JY
    J Hazard Mater; 2007 Jan; 139(3):537-42. PubMed ID: 16707215
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Buffering of alkaline steel slag leachate across a natural wetland.
    Mayes WM; Younger PL; Aumônier J
    Environ Sci Technol; 2006 Feb; 40(4):1237-43. PubMed ID: 16572781
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.
    Nehrenheim E; Gustafsson JP
    Bioresour Technol; 2008 Apr; 99(6):1571-7. PubMed ID: 17532623
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.
    Kehagia F
    Waste Manag Res; 2009 May; 27(3):288-94. PubMed ID: 19423603
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).
    Xing W; Lu W; Zhao Y; Zhang X; Deng W; Christensen TH
    Waste Manag; 2013 Feb; 33(2):382-9. PubMed ID: 23177016
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.
    Tsai TT; Kao CM; Wang JY
    Chemosphere; 2011 Apr; 83(5):687-92. PubMed ID: 21377186
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates.
    Ribé V; Nehrenheim E; Odlare M; Gustavsson L; Berglind R; Forsberg A
    Waste Manag; 2012 Oct; 32(10):1886-94. PubMed ID: 22703999
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.