BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 17492833)

  • 1. Fast quantification of recombinant protein inclusion bodies within intact cells by FT-IR spectroscopy.
    Gross-Selbeck S; Margreiter G; Obinger C; Bayer K
    Biotechnol Prog; 2007; 23(3):762-6. PubMed ID: 17492833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy.
    Ami D; Natalello A; Gatti-Lafranconi P; Lotti M; Doglia SM
    FEBS Lett; 2005 Jun; 579(16):3433-6. PubMed ID: 15949804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared spectroscopy analysis of the conformational quality of recombinant proteins within inclusion bodies.
    Doglia SM; Ami D; Natalello A; Gatti-Lafranconi P; Lotti M
    Biotechnol J; 2008 Feb; 3(2):193-201. PubMed ID: 18213662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid quantification of intracellular PHA using infrared spectroscopy: an application in mixed cultures.
    Arcos-Hernandez MV; Gurieff N; Pratt S; Magnusson P; Werker A; Vargas A; Lant P
    J Biotechnol; 2010 Nov; 150(3):372-9. PubMed ID: 20851154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of bioactivity change of crystalline trypsin during compression by chemoinformatics and 2-D Fourier-transform infrared spectroscopy.
    Otsuka M; Fukui Y; Otsuka K; Ozaki Y
    Analyst; 2006 Oct; 131(10):1116-21. PubMed ID: 17003859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Fourier-transform infrared (FT-IR) spectroscopy for simple and easy determination of chylomicron-triglyceride and very low density lipoprotein-triglyceride.
    Sato K; Seimiya M; Kodera Y; Kitamura A; Nomura F
    Clin Chim Acta; 2010 Feb; 411(3-4):285-90. PubMed ID: 19945450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics.
    Nicolaou N; Goodacre R
    Analyst; 2008 Oct; 133(10):1424-31. PubMed ID: 18810291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species.
    Janbu AO; Møretrø T; Bertrand D; Kohler A
    FEMS Microbiol Lett; 2008 Jan; 278(2):164-70. PubMed ID: 18053065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A validated Fourier transform infrared spectroscopy method for quantification of total lactones in Inula racemosa and Andrographis paniculata.
    Shivali G; Praful L; Vijay G
    Phytochem Anal; 2012; 23(2):171-6. PubMed ID: 21953688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FT-IR spectroscopy as an emerging method for rapid characterization of microorganisms.
    Sockalingum GD; Bouhedja W; Pina P; Allouch P; Bloy C; Manfait M
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):261-9. PubMed ID: 9551657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FT-IR spectroscopy study of perturbations induced by antibiotic on bacteria (Escherichia coli).
    Zeroual W; Manfait M; Choisy C
    Pathol Biol (Paris); 1995 Apr; 43(4):300-5. PubMed ID: 7567119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies of TEM1-beta-lactamase.
    Margreiter G; Schwanninger M; Bayer K; Obinger C
    Biotechnol J; 2008 Oct; 3(9-10):1245-55. PubMed ID: 18702088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative determination of pulegone in pennyroyal oil by FT-IR spectroscopy.
    Petrakis EA; Kimbaris AC; Pappas CS; Tarantilis PA; Polissiou MG
    J Agric Food Chem; 2009 Nov; 57(21):10044-8. PubMed ID: 19817373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.
    Otsuka M; Fukui Y; Ozaki Y
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):194-200. PubMed ID: 19121925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.
    Ojeda JJ; Romero-González ME; Banwart SA
    Anal Chem; 2009 Aug; 81(15):6467-73. PubMed ID: 19580254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal component analysis applied to Fourier transform infrared spectroscopy for the design of calibration sets for glycerol prediction models in wine and for the detection and classification of outlier samples.
    Nieuwoudt HH; Prior BA; Pretorius IS; Manley M; Bauer FF
    J Agric Food Chem; 2004 Jun; 52(12):3726-35. PubMed ID: 15186089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform infrared spectroscopy of gallbladder carcinoma cell line.
    Du JK; Shi JS; Sun XJ; Wang JS; Xu YZ; Wu JG; Zhang YF; Weng SF
    Hepatobiliary Pancreat Dis Int; 2009 Feb; 8(1):75-8. PubMed ID: 19208520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FT-IR study of heterologous protein expression in recombinant Escherichia coli strains.
    Ami D; Bonecchi L; Calì S; Orsini G; Tonon G; Doglia SM
    Biochim Biophys Acta; 2003 Dec; 1624(1-3):6-10. PubMed ID: 14642807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared microspectroscopy of complex biological systems: from intact cells to whole organisms.
    Ami D; Natalello A; Doglia SM
    Methods Mol Biol; 2012; 895():85-100. PubMed ID: 22760314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butene concentration prediction in ethylene/propylene/1-butene terpolymers by FT-IR spectroscopy through multivariate statistical analysis and artificial neural networks.
    Marengo E; Longo V; Bobba M; Robotti E; Zerbinati O; Di Martino S
    Talanta; 2009 Jan; 77(3):1111-9. PubMed ID: 19064099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.