These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 17493674)

  • 21. Influence of curing mode with a LED unit on polymerization contraction kinetics and degree of conversion of dental resin-based materials.
    Mortier E; Simon Y; Dahoun A; Gerdolle D
    J Dent Child (Chic); 2009; 76(2):149-55. PubMed ID: 19619429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage.
    Lohbauer U; Zinelis S; Rahiotis C; Petschelt A; Eliades G
    Dent Mater; 2009 Apr; 25(4):514-9. PubMed ID: 19081616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physicomechanical evaluation of low-shrinkage dental nanocomposites based on silsesquioxane cores.
    Soh MS; Yap AU; Sellinger A
    Eur J Oral Sci; 2007 Jun; 115(3):230-8. PubMed ID: 17587299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.
    Jan YD; Lee BS; Lin CP; Tseng WY
    J Formos Med Assoc; 2014 Apr; 113(4):242-8. PubMed ID: 24685300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous determination of polymerization shrinkage, exotherm and thermal expansion coefficient for dental resin-composites.
    Alnazzawi A; Watts DC
    Dent Mater; 2012 Dec; 28(12):1240-9. PubMed ID: 23018083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion-dependent shrinkage stress and strain in dental resins and composites.
    Stansbury JW; Trujillo-Lemon M; Lu H; Ding X; Lin Y; Ge J
    Dent Mater; 2005 Jan; 21(1):56-67. PubMed ID: 15681003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cure kinetics of composites using video imaging.
    Sharp LJ; Sy A; Rui Y; Suh BI
    Am J Dent; 2005 Apr; 18(2):141-4. PubMed ID: 15973835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elution characteristics of residual monomers in different light- and auto-curing resins.
    Danesh G; Hellak T; Reinhardt KJ; Végh A; Schäfer E; Lippold C
    Exp Toxicol Pathol; 2012 Nov; 64(7-8):867-72. PubMed ID: 21530202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Urethane-Dimethacrylate Monomers and Compositions for Use as Matrices in Dental Restorative Materials.
    Barszczewska-Rybarek IM; Chrószcz MW; Chladek G
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contraction stress and physical properties development of a resin-based composite irradiated using modulated curing methods at two C-factor levels.
    Cunha LG; Alonso RC; Pfeifer CS; Correr-Sobrinho L; Ferracane JL; Sinhoreti MA
    Dent Mater; 2008 Mar; 24(3):392-8. PubMed ID: 17681596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Tg, viscosity and chemical structure of monomers on shrinkage stress in light-cured dimethacrylate-based dental resins.
    Charton C; Falk V; Marchal P; Pla F; Colon P
    Dent Mater; 2007 Nov; 23(11):1447-59. PubMed ID: 17719627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of chemical analysis of residual monomer in a chemical-cured dental acrylic material to an FTIR method.
    Duray SJ; Gilbert JL; Lautenschlager EP
    Dent Mater; 1997 Jul; 13(4):240-5. PubMed ID: 11696903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of delivering light in specific narrow bandwidths from 394 to 515nm on the micro-hardness of resin composites.
    Price RB; Felix CA
    Dent Mater; 2009 Jul; 25(7):899-908. PubMed ID: 19243817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymerization shrinkage-strain kinetics of temporary crown and bridge materials.
    Kim SH; Watts DC
    Dent Mater; 2004 Jan; 20(1):88-95. PubMed ID: 14698778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of resin chemistry on a dental composite's biodegradation.
    Finer Y; Santerre JP
    J Biomed Mater Res A; 2004 May; 69(2):233-46. PubMed ID: 15057996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of 3,4-methylenedioxybenzene methoxyl methacrylate as coinitiator and comonomer for dental application.
    Shi S; Nie J
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):487-93. PubMed ID: 17285604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction kinetics and mechanics in photo-polymerised networks.
    Watts DC
    Dent Mater; 2005 Jan; 21(1):27-35. PubMed ID: 15680999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of original water content in acrylic resin on processing shrinkage.
    Chow TW; Cheng LY; Wong AW; Chu FC; Chai J
    Int J Prosthodont; 2005; 18(5):420-1. PubMed ID: 16220808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of phosphate monomers and bonding to dentin: esterification methods and use of phosphorus pentoxide.
    Ogliari FA; da Silva Ede O; Lima Gda S; Madruga FC; Henn S; Bueno M; Ceschi MA; Petzhold CL; Piva E
    J Dent; 2008 Mar; 36(3):171-7. PubMed ID: 18243472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites.
    Kakaboura A; Rahiotis C; Watts D; Silikas N; Eliades G
    Dent Mater; 2007 Mar; 23(3):272-8. PubMed ID: 16527343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.