BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17493774)

  • 21. Survival and prevalence of Clostridium difficile in manure compost derived from pigs.
    Usui M; Kawakura M; Yoshizawa N; San LL; Nakajima C; Suzuki Y; Tamura Y
    Anaerobe; 2017 Feb; 43():15-20. PubMed ID: 27871997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A prospective, case control study evaluating the association between Clostridium difficile toxins in the colon of neonatal swine and gross and microscopic lesions.
    Yaeger MJ; Kinyon JM; Glenn Songer J
    J Vet Diagn Invest; 2007 Jan; 19(1):52-9. PubMed ID: 17459832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacillus amyloliquefaciens as prophylactic treatment for Clostridium difficile-associated disease in a mouse model.
    Geeraerts S; Ducatelle R; Haesebrouck F; Van Immerseel F
    J Gastroenterol Hepatol; 2015 Aug; 30(8):1275-80. PubMed ID: 25800047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative strategies for Clostridium difficile infection.
    Bauer MP; van Dissel JT
    Int J Antimicrob Agents; 2009 Mar; 33 Suppl 1():S51-6. PubMed ID: 19303571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of biotherapeutics on cyclosporin-induced Clostridium difficile infection in mice.
    Kaur S; Vaishnavi C; Ray P; Kochhar R; Prasad KK
    J Gastroenterol Hepatol; 2010 Apr; 25(4):832-8. PubMed ID: 20074161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clostridium difficile--more difficult than ever.
    Kelly CP; LaMont JT
    N Engl J Med; 2008 Oct; 359(18):1932-40. PubMed ID: 18971494
    [No Abstract]   [Full Text] [Related]  

  • 27. The comparative pathology of Clostridium difficile-associated disease.
    Keel MK; Songer JG
    Vet Pathol; 2006 May; 43(3):225-40. PubMed ID: 16672570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental infection with Escherichia coli O149:F4ac in weaned piglets.
    Jensen GM; Frydendahl K; Svendsen O; Jørgensen CB; Cirera S; Fredholm M; Nielsen JP; Møller K
    Vet Microbiol; 2006 Jun; 115(1-3):243-9. PubMed ID: 16466864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of bacterial metabolism and physiology in the pathogenesis of Clostridium difficile disease.
    Bongaerts GP; Lyerly DM
    Microb Pathog; 1997 Apr; 22(4):253-6. PubMed ID: 9140922
    [No Abstract]   [Full Text] [Related]  

  • 30. [Study of the thermoresistance of Clostridium difficile spores].
    Meisel-Mikołajczyk F; Kaliszuk-Kamińska E; Martirosian G
    Med Dosw Mikrobiol; 1995; 47(3-4):177-81. PubMed ID: 8833929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Comparative study of thermoresistance spores of Clostridium difficile strains belonging to different toxigenicity groups].
    Wultańska D; Pituch H; Obuch-Woszczatyński P; Meisel-Mikołajczyk F; Luczak M
    Med Dosw Mikrobiol; 2004; 56(2):155-9. PubMed ID: 15544087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nontoxigenic Clostridium difficile protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile.
    Nagaro KJ; Phillips ST; Cheknis AK; Sambol SP; Zukowski WE; Johnson S; Gerding DN
    Antimicrob Agents Chemother; 2013 Nov; 57(11):5266-70. PubMed ID: 23939887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Longitudinal investigation of Clostridium difficile shedding in piglets.
    Weese JS; Wakeford T; Reid-Smith R; Rousseau J; Friendship R
    Anaerobe; 2010 Oct; 16(5):501-4. PubMed ID: 20708700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clostridium difficile spore germination: an update.
    Burns DA; Heap JT; Minton NP
    Res Microbiol; 2010 Nov; 161(9):730-4. PubMed ID: 20863888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orally administered beta-lactamase enzymes represent a novel strategy to prevent colonization by Clostridium difficile.
    Stiefel U; Nerandzic MM; Koski P; Donskey CJ
    J Antimicrob Chemother; 2008 Nov; 62(5):1105-8. PubMed ID: 18693236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge.
    Lessard M; Dupuis M; Gagnon N; Nadeau E; Matte JJ; Goulet J; Fairbrother JM
    J Anim Sci; 2009 Mar; 87(3):922-34. PubMed ID: 19028865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes.
    Rupnik M
    FEMS Microbiol Rev; 2008 May; 32(3):541-55. PubMed ID: 18397287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clostridium difficile PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans.
    Debast SB; van Leengoed LA; Goorhuis A; Harmanus C; Kuijper EJ; Bergwerff AA
    Environ Microbiol; 2009 Feb; 11(2):505-11. PubMed ID: 19196280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1.
    Su Y; Yao W; Perez-Gutierrez ON; Smidt H; Zhu WY
    Anaerobe; 2008 Apr; 14(2):78-86. PubMed ID: 18272412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Clostridium-difficile-associated diarrhea].
    Bujanda L; Cosme A
    Gastroenterol Hepatol; 2009 Jan; 32(1):48-56. PubMed ID: 19174100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.