BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 17493854)

  • 1. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking potential binding peptides to MHC molecules by a computational threading approach.
    Altuvia Y; Schueler O; Margalit H
    J Mol Biol; 1995 Jun; 249(2):244-50. PubMed ID: 7540211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candidate epitope identification using peptide property models: application to cancer immunotherapy.
    Sung MH; Simon R
    Methods; 2004 Dec; 34(4):460-7. PubMed ID: 15542372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic anticancer vaccine candidates: rational design of antigenic peptide mimetics that activate tumor-specific T-cells.
    Douat-Casassus C; Marchand-Geneste N; Diez E; Gervois N; Jotereau F; Quideau S
    J Med Chem; 2007 Apr; 50(7):1598-609. PubMed ID: 17328535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-based approach for prediction of MHC-binding peptides.
    Altuvia Y; Margalit H
    Methods; 2004 Dec; 34(4):454-9. PubMed ID: 15542371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Class I MHC-peptide interaction: structural and functional aspects.
    Ruppert J; Kubo RT; Sidney J; Grey HM; Sette A
    Behring Inst Mitt; 1994 Jul; (94):48-60. PubMed ID: 7998914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting peptide binding to Major Histocompatibility Complex molecules.
    Liao WW; Arthur JW
    Autoimmun Rev; 2011 Jun; 10(8):469-73. PubMed ID: 21333759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAPPP: MHC class I antigenic peptide processing prediction.
    Hakenberg J; Nussbaum AK; Schild H; Rammensee HG; Kuttler C; Holzhütter HG; Kloetzel PM; Kaufmann SH; Mollenkopf HJ
    Appl Bioinformatics; 2003; 2(3):155-8. PubMed ID: 15130801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains.
    Parker KC; Bednarek MA; Coligan JE
    J Immunol; 1994 Jan; 152(1):163-75. PubMed ID: 8254189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide binding motif predictive algorithms correspond with experimental binding of leukemia vaccine candidate peptides to HLA-A*0201 molecules.
    Gomez-Nunez M; Pinilla-Ibarz J; Dao T; May RJ; Pao M; Jaggi JS; Scheinberg DA
    Leuk Res; 2006 Oct; 30(10):1293-8. PubMed ID: 16533527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The TAG family of cancer/testis antigens is widely expressed in a variety of malignancies and gives rise to HLA-A2-restricted epitopes.
    Adair SJ; Carr TM; Fink MJ; Slingluff CL; Hogan KT
    J Immunother; 2008 Jan; 31(1):7-17. PubMed ID: 18157007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural prediction of peptides bound to MHC class I.
    Fagerberg T; Cerottini JC; Michielin O
    J Mol Biol; 2006 Feb; 356(2):521-46. PubMed ID: 16368108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in MHC class I self peptide repertoires among HLA-A2 subtypes.
    Sudo T; Kamikawaji N; Kimura A; Date Y; Savoie CJ; Nakashima H; Furuichi E; Kuhara S; Sasazuki T
    J Immunol; 1995 Nov; 155(10):4749-56. PubMed ID: 7594476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting informative data for developing peptide-MHC binding predictors using a query by committee approach.
    Christensen JK; Lamberth K; Nielsen M; Lundegaard C; Worning P; Lauemøller SL; Buus S; Brunak S; Lund O
    Neural Comput; 2003 Dec; 15(12):2931-42. PubMed ID: 14629874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus motifs and peptide ligands of MHC class I molecules.
    Falk K; Rötzschke O
    Semin Immunol; 1993 Apr; 5(2):81-94. PubMed ID: 7684938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting.
    Slingluff CL; Petroni GR; Chianese-Bullock KA; Smolkin ME; Hibbitts S; Murphy C; Johansen N; Grosh WW; Yamshchikov GV; Neese PY; Patterson JW; Fink R; Rehm PK
    Clin Cancer Res; 2007 Nov; 13(21):6386-95. PubMed ID: 17975151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.