These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17493915)

  • 1. Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio.
    Lippert MT; Takagaki K; Xu W; Huang X; Wu JY
    J Neurophysiol; 2007 Jul; 98(1):502-12. PubMed ID: 17493915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-sensitive dye imaging of population neuronal activity in cortical tissue.
    Jin W; Zhang RJ; Wu JY
    J Neurosci Methods; 2002 Mar; 115(1):13-27. PubMed ID: 11897360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes.
    Shoham D; Glaser DE; Arieli A; Kenet T; Wijnbergen C; Toledo Y; Hildesheim R; Grinvald A
    Neuron; 1999 Dec; 24(4):791-802. PubMed ID: 10624943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.
    Omer DB; Hildesheim R; Grinvald A
    Neuroimage; 2013 Nov; 82():237-51. PubMed ID: 23689017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts.
    Grandy TH; Greenfield SA; Devonshire IM
    J Neurophysiol; 2012 Dec; 108(11):2931-45. PubMed ID: 22972958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Voltage-Sensitive Dye Imaging of Mammalian Cortex Using "Blue" Dyes.
    Baker B; Gao X; Wolff BS; Jin L; Cohen LB; Bleau CX; Wu JY
    Cold Spring Harb Protoc; 2015 Nov; 2015(11):1000-2. PubMed ID: 26527769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time artifact filtering in continuous VEPs/fMRI recording.
    Anwar MN; Bonzano L; Sebastiano DR; Roccatagliata L; Gualniera G; Vitali P; Ogliastro C; Spadavecchia L; Rodriguez G; Sanguineti V; Morasso P; Bandini F
    J Neurosci Methods; 2009 Nov; 184(2):213-23. PubMed ID: 19682492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and precise retinotopic mapping of the visual cortex obtained by voltage-sensitive dye imaging in the behaving monkey.
    Yang Z; Heeger DJ; Seidemann E
    J Neurophysiol; 2007 Aug; 98(2):1002-14. PubMed ID: 17522170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat.
    McVea DA; Mohajerani MH; Murphy TH
    J Neurosci; 2012 Aug; 32(32):10982-94. PubMed ID: 22875932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Blue' voltage-sensitive dyes for studying spatiotemporal dynamics in the brain: visualizing cortical waves.
    Geng X; Wu JY
    Neurophotonics; 2017 Jul; 4(3):031207. PubMed ID: 28352646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compression and reflection of visually evoked cortical waves.
    Xu W; Huang X; Takagaki K; Wu JY
    Neuron; 2007 Jul; 55(1):119-29. PubMed ID: 17610821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Population Membrane Potential Signals from Neocortex.
    Liang J; Xu W; Geng X; Wu JY
    Adv Exp Med Biol; 2015; 859():171-96. PubMed ID: 26238053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biophysical cortical column model to study the multi-component origin of the VSDI signal.
    Chemla S; Chavane F
    Neuroimage; 2010 Nov; 53(2):420-38. PubMed ID: 20600993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new planar multielectrode array: recording from a rat auditory cortex.
    Tsytsarev V; Taketani M; Schottler F; Tanaka S; Hara M
    J Neural Eng; 2006 Dec; 3(4):293-8. PubMed ID: 17124333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex.
    Suzurikawa J; Tani T; Nakao M; Tanaka S; Takahashi H
    J Neural Eng; 2009 Dec; 6(6):066002. PubMed ID: 19794238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. I. Characterization of the recording system.
    Cinelli AR; Neff SR; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2017-32. PubMed ID: 7542698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved multiple-site optical membrane potential-recording system to obtain high-quality single sweep signals in intact rat cerebral cortex.
    Hama N; Ito S; Hirota A
    J Neurosci Methods; 2010 Dec; 194(1):73-80. PubMed ID: 20883722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording.
    Carlson GC; Coulter DA
    Nat Protoc; 2008; 3(2):249-55. PubMed ID: 18274527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal mapping of rat whisker barrels with fast scattered light signals.
    Rector DM; Carter KM; Volegov PL; George JS
    Neuroimage; 2005 Jun; 26(2):619-27. PubMed ID: 15907319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.