BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 17493935)

  • 1. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3.
    Pedmale UV; Liscum E
    J Biol Chem; 2007 Jul; 282(27):19992-20001. PubMed ID: 17493935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3).
    Roberts D; Pedmale UV; Morrow J; Sachdev S; Lechner E; Tang X; Zheng N; Hannink M; Genschik P; Liscum E
    Plant Cell; 2011 Oct; 23(10):3627-40. PubMed ID: 21990941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana.
    Inada S; Ohgishi M; Mayama T; Okada K; Sakai T
    Plant Cell; 2004 Apr; 16(4):887-96. PubMed ID: 15031408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 affects phot2-dependent phototropism in
    Kimura T; Haga K; Sakai T
    Plant Signal Behav; 2022 Dec; 17(1):2027138. PubMed ID: 35068333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deetiolation Enhances Phototropism by Modulating NON-PHOTOTROPIC HYPOCOTYL3 Phosphorylation Status.
    Sullivan S; Kharshiing E; Laird J; Sakai T; Christie JM
    Plant Physiol; 2019 Jun; 180(2):1119-1131. PubMed ID: 30918082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana.
    Zhao X; Zhao Q; Xu C; Wang J; Zhu J; Shang B; Zhang X
    J Integr Plant Biol; 2018 Jul; 60(7):562-577. PubMed ID: 29393576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.
    Wan Y; Jasik J; Wang L; Hao H; Volkmann D; Menzel D; Mancuso S; Baluška F; Lin J
    Plant Cell; 2012 Feb; 24(2):551-65. PubMed ID: 22374399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis.
    Zhao QP; Zhu JD; Li NN; Wang XN; Zhao X; Zhang X
    J Integr Plant Biol; 2020 May; 62(5):614-630. PubMed ID: 30941890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The continuing arc toward phototropic enlightenment.
    Liscum E; Nittler P; Koskie K
    J Exp Bot; 2020 Mar; 71(5):1652-1658. PubMed ID: 31907539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of NONPHOTOTROPIC HYPOCOTYL3 affects photosensory adaptation during the phototropic response.
    Kimura T; Haga K; Nomura Y; Higaki T; Nakagami H; Sakai T
    Plant Physiol; 2021 Oct; 187(2):981-995. PubMed ID: 34608954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.
    Kang B; Grancher N; Koyffmann V; Lardemer D; Burney S; Ahmad M
    Planta; 2008 Apr; 227(5):1091-9. PubMed ID: 18183416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex.
    Sullivan S; Takemiya A; Kharshiing E; Cloix C; Shimazaki KI; Christie JM
    Plant J; 2016 Dec; 88(6):907-920. PubMed ID: 27545835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding.
    Sullivan S; Waksman T; Paliogianni D; Henderson L; Lütkemeyer M; Suetsugu N; Christie JM
    Nat Commun; 2021 Oct; 12(1):6129. PubMed ID: 34675214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental test of the adaptive evolution of phototropins: blue-light photoreceptors controlling phototropism in Arabidopsis thaliana.
    Galen C; Huddle J; Liscum E
    Evolution; 2004 Mar; 58(3):515-23. PubMed ID: 15119436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis ROOT PHOTOTROPISM2 Contributes to the Adaptation to High-Intensity Light in Phototropic Responses.
    Haga K; Tsuchida-Mayama T; Yamada M; Sakai T
    Plant Cell; 2015 Apr; 27(4):1098-112. PubMed ID: 25873385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue light-induced phototropism of inflorescence stems and petioles is mediated by phototropin family members phot1 and phot2.
    Kagawa T; Kimura M; Wada M
    Plant Cell Physiol; 2009 Oct; 50(10):1774-85. PubMed ID: 19689999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning.
    de Carbonnel M; Davis P; Roelfsema MR; Inoue S; Schepens I; Lariguet P; Geisler M; Shimazaki K; Hangarter R; Fankhauser C
    Plant Physiol; 2010 Mar; 152(3):1391-405. PubMed ID: 20071603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the functional specificities of phototropin 1 and 2.
    Aihara Y; Tabata R; Suzuki T; Shimazaki K; Nagatani A
    Plant J; 2008 Nov; 56(3):364-75. PubMed ID: 18643969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosensory adaptation mechanisms in hypocotyl phototropism: how plants recognize the direction of a light source.
    Haga K; Sakai T
    J Exp Bot; 2023 Mar; 74(6):1758-1769. PubMed ID: 36629282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.
    Stone BB; Stowe-Evans EL; Harper RM; Celaya RB; Ljung K; Sandberg G; Liscum E
    Mol Plant; 2008 Jan; 1(1):129-44. PubMed ID: 20031920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.