These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
608 related articles for article (PubMed ID: 17494388)
1. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR; Del Grosso SJ; Parton WJ Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388 [TBL] [Abstract][Full Text] [Related]
2. Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management. De Gryze S; Wolf A; Kaffka SR; Mitchell J; Rolston DE; Temple SR; Lee J; Six J Ecol Appl; 2010 Oct; 20(7):1805-19. PubMed ID: 21049871 [TBL] [Abstract][Full Text] [Related]
3. Net energy of cellulosic ethanol from switchgrass. Schmer MR; Vogel KP; Mitchell RB; Perrin RK Proc Natl Acad Sci U S A; 2008 Jan; 105(2):464-9. PubMed ID: 18180449 [TBL] [Abstract][Full Text] [Related]
4. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. Schmer MR; Vogel KP; Varvel GE; Follett RF; Mitchell RB; Jin VL PLoS One; 2014; 9(3):e89501. PubMed ID: 24594783 [TBL] [Abstract][Full Text] [Related]
5. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. McGill BM; Hamilton SK; Millar N; Robertson GP Glob Chang Biol; 2018 Dec; 24(12):5948-5960. PubMed ID: 30295393 [TBL] [Abstract][Full Text] [Related]
6. Estimation of net greenhouse gas balance using crop- and soil-based approaches: two case studies. Huang J; Chen Y; Sui P; Gao W Sci Total Environ; 2013 Jul; 456-457():299-306. PubMed ID: 23619090 [TBL] [Abstract][Full Text] [Related]
7. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Mosier AR; Halvorson AD; Reule CA; Liu XJ J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479 [TBL] [Abstract][Full Text] [Related]
8. Measuring and modeling the effects of drainage water management on soil greenhouse gas fluxes from corn and soybean fields. Nangia V; Sunohara MD; Topp E; Gregorich EG; Drury CF; Gottschall N; Lapen DR J Environ Manage; 2013 Nov; 129():652-64. PubMed ID: 23910796 [TBL] [Abstract][Full Text] [Related]
9. Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Liu C; Yao Z; Wang K; Zheng X; Li B Sci Total Environ; 2019 Jan; 647():895-904. PubMed ID: 30096677 [TBL] [Abstract][Full Text] [Related]
10. Greenhouse gas fluxes (CO Maier R; Hörtnagl L; Buchmann N Sci Total Environ; 2022 Nov; 849():157541. PubMed ID: 35882341 [TBL] [Abstract][Full Text] [Related]
11. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. Pujol Pereira EI; Suddick EC; Six J PLoS One; 2016; 11(3):e0150837. PubMed ID: 26963623 [TBL] [Abstract][Full Text] [Related]
12. Full GHG balance of a drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes. Karki S; Elsgaard L; Kandel TP; Lærke PE Environ Monit Assess; 2015 Mar; 187(3):62. PubMed ID: 25647790 [TBL] [Abstract][Full Text] [Related]
13. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180 [TBL] [Abstract][Full Text] [Related]
14. Response of Soil Surface Greenhouse Gas Fluxes to Crop Residue Removal and Cover Crops under a Corn-Soybean Rotation. Wegner BR; Chalise KS; Singh S; Lai L; Abagandura GO; Kumar S; Osborne SL; Lehman RM; Jagadamma S J Environ Qual; 2018 Sep; 47(5):1146-1154. PubMed ID: 30272788 [TBL] [Abstract][Full Text] [Related]
15. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Gaunt JL; Lehmann J Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980 [TBL] [Abstract][Full Text] [Related]
16. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Gao B; Huang T; Ju X; Gu B; Huang W; Xu L; Rees RM; Powlson DS; Smith P; Cui S Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572 [TBL] [Abstract][Full Text] [Related]
17. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop. Duval BD; Anderson-Teixeira KJ; Davis SC; Keogh C; Long SP; Parton WJ; DeLucia EH PLoS One; 2013; 8(8):e72019. PubMed ID: 23991028 [TBL] [Abstract][Full Text] [Related]
18. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover]. Tian W; Liao C; Li L; Zhao D Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036 [TBL] [Abstract][Full Text] [Related]
19. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels. Cai H; Wang MQ Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852 [TBL] [Abstract][Full Text] [Related]
20. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model. Cheng K; Ogle SM; Parton WJ; Pan G Glob Chang Biol; 2014 Mar; 20(3):948-62. PubMed ID: 23966349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]