BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 17494388)

  • 1. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management.
    De Gryze S; Wolf A; Kaffka SR; Mitchell J; Rolston DE; Temple SR; Lee J; Six J
    Ecol Appl; 2010 Oct; 20(7):1805-19. PubMed ID: 21049871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Net energy of cellulosic ethanol from switchgrass.
    Schmer MR; Vogel KP; Mitchell RB; Perrin RK
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):464-9. PubMed ID: 18180449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.
    Schmer MR; Vogel KP; Varvel GE; Follett RF; Mitchell RB; Jin VL
    PLoS One; 2014; 9(3):e89501. PubMed ID: 24594783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system.
    McGill BM; Hamilton SK; Millar N; Robertson GP
    Glob Chang Biol; 2018 Dec; 24(12):5948-5960. PubMed ID: 30295393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of net greenhouse gas balance using crop- and soil-based approaches: two case studies.
    Huang J; Chen Y; Sui P; Gao W
    Sci Total Environ; 2013 Jul; 456-457():299-306. PubMed ID: 23619090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring and modeling the effects of drainage water management on soil greenhouse gas fluxes from corn and soybean fields.
    Nangia V; Sunohara MD; Topp E; Gregorich EG; Drury CF; Gottschall N; Lapen DR
    J Environ Manage; 2013 Nov; 129():652-64. PubMed ID: 23910796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems.
    Liu C; Yao Z; Wang K; Zheng X; Li B
    Sci Total Environ; 2019 Jan; 647():895-904. PubMed ID: 30096677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gas fluxes (CO
    Maier R; Hörtnagl L; Buchmann N
    Sci Total Environ; 2022 Nov; 849():157541. PubMed ID: 35882341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.
    Pujol Pereira EI; Suddick EC; Six J
    PLoS One; 2016; 11(3):e0150837. PubMed ID: 26963623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full GHG balance of a drained fen peatland cropped to spring barley and reed canary grass using comparative assessment of CO2 fluxes.
    Karki S; Elsgaard L; Kandel TP; Lærke PE
    Environ Monit Assess; 2015 Mar; 187(3):62. PubMed ID: 25647790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.
    Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D
    Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Soil Surface Greenhouse Gas Fluxes to Crop Residue Removal and Cover Crops under a Corn-Soybean Rotation.
    Wegner BR; Chalise KS; Singh S; Lai L; Abagandura GO; Kumar S; Osborne SL; Lehman RM; Jagadamma S
    J Environ Qual; 2018 Sep; 47(5):1146-1154. PubMed ID: 30272788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production.
    Gaunt JL; Lehmann J
    Environ Sci Technol; 2008 Jun; 42(11):4152-8. PubMed ID: 18589980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration.
    Gao B; Huang T; Ju X; Gu B; Huang W; Xu L; Rees RM; Powlson DS; Smith P; Cui S
    Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.
    Duval BD; Anderson-Teixeira KJ; Davis SC; Keogh C; Long SP; Parton WJ; DeLucia EH
    PLoS One; 2013; 8(8):e72019. PubMed ID: 23991028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H; Wang MQ
    Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model.
    Cheng K; Ogle SM; Parton WJ; Pan G
    Glob Chang Biol; 2014 Mar; 20(3):948-62. PubMed ID: 23966349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.