BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 17494388)

  • 21. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model.
    Cheng K; Ogle SM; Parton WJ; Pan G
    Glob Chang Biol; 2014 Mar; 20(3):948-62. PubMed ID: 23966349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Implications of Observed and Simulated Soil Carbon Sequestration for Management Options in Corn-based Rotations.
    Dell CJ; Gollany HT; Adler PR; Skinner RH; Polumsky RW
    J Environ Qual; 2018 Jul; 47(4):617-624. PubMed ID: 30025046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developments in greenhouse gas emissions and net energy use in Danish agriculture - how to achieve substantial CO(2) reductions?
    Dalgaard T; Olesen JE; Petersen SO; Petersen BM; Jørgensen U; Kristensen T; Hutchings NJ; Gyldenkærne S; Hermansen JE
    Environ Pollut; 2011 Nov; 159(11):3193-203. PubMed ID: 21454001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of freeze-thaw cycles on greenhouse gas emissions in marginally productive agricultural land under different perennial bioenergy crops.
    Osei AK; Rezanezhad F; Oelbermann M
    J Environ Manage; 2024 Apr; 357():120739. PubMed ID: 38552522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatiotemporal changes in greenhouse gas emissions and soil organic carbon sequestration for major cropping systems across China and their drivers over the past two decades.
    Wang Y; Tao F; Yin L; Chen Y
    Sci Total Environ; 2022 Aug; 833():155087. PubMed ID: 35421495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Greenhouse gas mitigation in agriculture.
    Smith P; Martino D; Cai Z; Gwary D; Janzen H; Kumar P; McCarl B; Ogle S; O'Mara F; Rice C; Scholes B; Sirotenko O; Howden M; McAllister T; Pan G; Romanenkov V; Schneider U; Towprayoon S; Wattenbach M; Smith J
    Philos Trans R Soc Lond B Biol Sci; 2008 Feb; 363(1492):789-813. PubMed ID: 17827109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term impacts of manure amendments on carbon and greenhouse gas dynamics of rangelands.
    Owen JJ; Parton WJ; Silver WL
    Glob Chang Biol; 2015 Dec; 21(12):4533-47. PubMed ID: 26183573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.
    Aguirre-Villegas HA; Passos-Fonseca TH; Reinemann DJ; Armentano LE; Wattiaux MA; Cabrera VE; Norman JM; Larson R
    J Dairy Sci; 2015 Mar; 98(3):1571-92. PubMed ID: 25597974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field study.
    Gao B; Ju X; Su F; Meng Q; Oenema O; Christie P; Chen X; Zhang F
    Sci Total Environ; 2014 Feb; 472():112-24. PubMed ID: 24291136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon budget of diversified cropping systems in southwestern China: Revealing key crop categories and influencing factors under different classifications.
    Li H; Xu Y; Gao W; Cui J; Chen Y
    Environ Res; 2024 Aug; 255():119189. PubMed ID: 38777293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon life cycle assessment of shelterbelts in Saskatchewan, Canada.
    Rudd L; Kulshreshtha S; Belcher K; Amichev B
    J Environ Manage; 2021 Nov; 297():113400. PubMed ID: 34346397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Greenhouse gas emissions and global warming potential from biofuel cropping systems fertilized with mineral and organic nitrogen sources.
    Pilecco GE; Chantigny MH; Weiler DA; Aita C; Thivierge MN; Schmatz R; Chaves B; Giacomini SJ
    Sci Total Environ; 2020 Aug; 729():138767. PubMed ID: 32387769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses.
    Adler PR; Mitchell JG; Pourhashem G; Spatari S; Del Grosso SJ; Parton WJ
    Ecol Appl; 2015 Jun; 25(4):1142-56. PubMed ID: 26465048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Threshold dynamics in soil carbon storage for bioenergy crops.
    Woo DK; Quijano JC; Kumar P; Chaoka S; Bernacchi CJ
    Environ Sci Technol; 2014 Oct; 48(20):12090-8. PubMed ID: 25207669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems.
    Weller S; Janz B; Jörg L; Kraus D; Racela HS; Wassmann R; Butterbach-Bahl K; Kiese R
    Glob Chang Biol; 2016 Jan; 22(1):432-48. PubMed ID: 26386203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying water and CO
    Anapalli SS; Fisher DK; Reddy KN; Krutz JL; Pinnamaneni SR; Sui R
    Sci Total Environ; 2019 May; 663():338-350. PubMed ID: 30716624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.
    Spatari S; Zhang Y; MacLean HL
    Environ Sci Technol; 2005 Dec; 39(24):9750-8. PubMed ID: 16475363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.