These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17495168)

  • 21. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults.
    Tal Y; Rubino V; Rosakis AJ; Lapusta N
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21095-21100. PubMed ID: 32817539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast and Localized Temperature Measurements During Simulated Earthquakes in Carbonate Rocks.
    Aretusini S; Núñez-Cascajero A; Spagnuolo E; Tapetado A; Vázquez C; Di Toro G
    Geophys Res Lett; 2021 May; 48(9):e2020GL091856. PubMed ID: 34219843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fault zone fabric and fault weakness.
    Collettini C; Niemeijer A; Viti C; Marone C
    Nature; 2009 Dec; 462(7275):907-10. PubMed ID: 20016599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates.
    Proctor BP; Mitchell TM; Hirth G; Goldsby D; Zorzi F; Platt JD; Di Toro G
    J Geophys Res Solid Earth; 2014 Nov; 119(11):8107-8131. PubMed ID: 26167425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults.
    Reches Z; Zu X; Carpenter BM
    Sci Rep; 2019 Jul; 9(1):10627. PubMed ID: 31337789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scale dependence of rock friction at high work rate.
    Yamashita F; Fukuyama E; Mizoguchi K; Takizawa S; Xu S; Kawakata H
    Nature; 2015 Dec; 528(7581):254-7. PubMed ID: 26659187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical state of water controls friction of gabbro-built faults.
    Feng W; Yao L; Cornelio C; Gomila R; Ma S; Yang C; Germinario L; Mazzoli C; Di Toro G
    Nat Commun; 2023 Aug; 14(1):4612. PubMed ID: 37553361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fault lubrication during earthquakes.
    Di Toro G; Han R; Hirose T; De Paola N; Nielsen S; Mizoguchi K; Ferri F; Cocco M; Shimamoto T
    Nature; 2011 Mar; 471(7339):494-8. PubMed ID: 21430777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.
    McGuire JJ; Boettcher MS; Jordan TH
    Nature; 2005 Mar; 434(7032):457-61. PubMed ID: 15791246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical behaviour of fluid-lubricated faults.
    Cornelio C; Spagnuolo E; Di Toro G; Nielsen S; Violay M
    Nat Commun; 2019 Mar; 10(1):1274. PubMed ID: 30894547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates.
    Ikari MJ; Kopf AJ
    Sci Adv; 2017 Nov; 3(11):e1701269. PubMed ID: 29202027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An empirically based steady state friction law and implications for fault stability.
    Spagnuolo E; Nielsen S; Violay M; Di Toro G
    Geophys Res Lett; 2016 Apr; 43(7):3263-3271. PubMed ID: 27667875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fault rheology beyond frictional melting.
    Lavallée Y; Hirose T; Kendrick JE; Hess KU; Dingwell DB
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9276-80. PubMed ID: 26124123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Weak phases production and heat generation control fault friction during seismic slip.
    Rattez H; Veveakis M
    Nat Commun; 2020 Jan; 11(1):350. PubMed ID: 31953398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The aftershock signature of supershear earthquakes.
    Bouchon M; Karabulut H
    Science; 2008 Jun; 320(5881):1323-5. PubMed ID: 18535239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. G: Fracture energy, friction and dissipation in earthquakes.
    Nielsen S; Spagnuolo E; Violay M; Smith S; Di Toro G; Bistacchi A
    J Seismol; 2016; 20(4):1187-1205. PubMed ID: 28190968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.
    Niemeijer AR; Boulton C; Toy VG; Townend J; Sutherland R
    J Geophys Res Solid Earth; 2016 Feb; 121(2):624-647. PubMed ID: 27610290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Friction weakening by mechanical vibrations: A velocity-controlled process.
    Vidal V; Oliver C; Lastakowski H; Varas G; Géminard J-
    Eur Phys J E Soft Matter; 2019 Jul; 42(7):91. PubMed ID: 31313027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slip rate variations on normal faults during glacial-interglacial changes in surface loads.
    Hetzel R; Hampel A
    Nature; 2005 May; 435(7038):81-4. PubMed ID: 15875019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coseismic fault sealing and fluid pressurization during earthquakes.
    Yao L; Ma S; Di Toro G
    Nat Commun; 2023 Mar; 14(1):1136. PubMed ID: 36890136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.