BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17495419)

  • 1. Developmental changes of aldehyde oxidase in postnatal rat liver.
    Tayama Y; Moriyasu A; Sugihara K; Ohta S; Kitamura S
    Drug Metab Pharmacokinet; 2007 Apr; 22(2):119-24. PubMed ID: 17495419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes of aldehyde oxidase activity and protein expression in human liver cytosol.
    Tayama Y; Sugihara K; Sanoh S; Miyake K; Kitamura S; Ohta S
    Drug Metab Pharmacokinet; 2012; 27(5):543-7. PubMed ID: 22453079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of aldehyde oxidase activity in vivo from conversion ratio of N1-methylnicotinamide to pyridones, and intraspecies variation of the enzyme activity in rats.
    Sugihara K; Tayama Y; Shimomiya K; Yoshimoto D; Ohta S; Kitamura S
    Drug Metab Dispos; 2006 Feb; 34(2):208-12. PubMed ID: 16299165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo-in vitro relationship of methotrexate 7-hydroxylation by aldehyde oxidase in four different strain rats.
    Moriyasu A; Sugihara K; Nakatani K; Ohta S; Kitamura S
    Drug Metab Pharmacokinet; 2006 Dec; 21(6):485-91. PubMed ID: 17220564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldehyde oxidase-catalyzed metabolism of N1-methylnicotinamide in vivo and in vitro in chimeric mice with humanized liver.
    Kitamura S; Nitta K; Tayama Y; Tanoue C; Sugihara K; Inoue T; Horie T; Ohta S
    Drug Metab Dispos; 2008 Jul; 36(7):1202-5. PubMed ID: 18332084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in aldehyde oxidase activity in cytosolic preparations of human and monkey liver.
    Sugihara K; Kitamura S; Tatsumi K; Asahara T; Dohi K
    Biochem Mol Biol Int; 1997 May; 41(6):1153-60. PubMed ID: 9161710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cynomolgus monkey liver aldehyde oxidase: extremely high oxidase activity and an attempt at purification.
    Sugihara K; Katsuma Y; Kitamura S; Ohta S; Fujitani M; Shintani H
    Comp Biochem Physiol C Toxicol Pharmacol; 2000 May; 126(1):53-60. PubMed ID: 11048665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain differences of the ability to hydroxylate methotrexate in rats.
    Kitamura S; Nakatani K; Sugihara K; Ohta S
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 Mar; 122(3):331-6. PubMed ID: 10336093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin.
    Ueda O; Sugihara K; Ohta S; Kitamura S
    Drug Metab Dispos; 2005 Sep; 33(9):1312-8. PubMed ID: 15932950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of tea beverages on aldehyde oxidase activity.
    Tayama Y; Sugihara K; Sanoh S; Miyake K; Morita S; Kitamura S; Ohta S
    Drug Metab Pharmacokinet; 2011; 26(1):94-101. PubMed ID: 21084768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of commonly used organic solvents on aldehyde oxidase-mediated vanillin, phthalazine and methotrexate oxidation in human, rat and mouse liver subcellular fractions.
    Behera D; Pattem R; Gudi G
    Xenobiotica; 2014 Aug; 44(8):722-33. PubMed ID: 24533630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide.
    Kitamura S; Tatsumi K
    Biochem Biophys Res Commun; 1984 Apr; 120(2):602-6. PubMed ID: 6233971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromate reduction by rabbit liver aldehyde oxidase.
    Banks RB; Cooke RT
    Biochem Biophys Res Commun; 1986 May; 137(1):8-14. PubMed ID: 2941018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecies differences in the metabolism of methotrexate: An insight into the active site differences between human and rabbit aldehyde oxidase.
    Choughule KV; Joswig-Jones CA; Jones JP
    Biochem Pharmacol; 2015 Aug; 96(3):288-95. PubMed ID: 26032640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase for methyl- and nitrobenzaldehydes.
    Veskoukis AS; Kouretas D; Panoutsopoulos GI
    Eur J Drug Metab Pharmacokinet; 2006; 31(1):11-6. PubMed ID: 16715777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldehyde oxidase-catalysed oxidation of methotrexate in the liver of guinea-pig, rabbit and man.
    Jordan CG; Rashidi MR; Laljee H; Clarke SE; Brown JE; Beedham C
    J Pharm Pharmacol; 1999 Apr; 51(4):411-8. PubMed ID: 10385213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alleviation of fatty liver in a rat model by enhancing N
    Takeuchi K; Yokouchi C; Goto H; Umehara K; Yamada H; Ishii Y
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):203-210. PubMed ID: 30446221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic polymorphism of aldehyde oxidase in Donryu rats.
    Itoh K; Masubuchi A; Sasaki T; Adachi M; Watanabe N; Nagata K; Yamazoe Y; Hiratsuka M; Mizugaki M; Tanaka Y
    Drug Metab Dispos; 2007 May; 35(5):734-9. PubMed ID: 17293383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No influence of enzyme inhibitors on the hydroxylation of methotrexate in rats.
    Yu D; Brasch H; Iven H
    Cancer Lett; 1989 Nov; 48(2):153-6. PubMed ID: 2819703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase towards substituted benzaldehydes.
    Panoutsopoulos GI; Beedham C
    Acta Biochim Pol; 2004; 51(3):649-63. PubMed ID: 15448727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.