BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17495517)

  • 1. Autophagy during conidiation, conidial germination and turgor generation in Magnaporthe grisea.
    Liu XH; Lu JP; Lin FC
    Autophagy; 2007; 3(5):472-3. PubMed ID: 17495517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis.
    Liu XH; Lu JP; Zhang L; Dong B; Min H; Lin FC
    Eukaryot Cell; 2007 Jun; 6(6):997-1005. PubMed ID: 17416896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the biological roles of autophagy in appressorium morphogenesis in Magnaporthe oryzae.
    Liu XH; Lin FC
    J Zhejiang Univ Sci B; 2008 Oct; 9(10):793-6. PubMed ID: 18837106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae.
    Lu JP; Liu XH; Feng XX; Min H; Lin FC
    Curr Genet; 2009 Aug; 55(4):461-73. PubMed ID: 19629489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea.
    Wang ZY; Jenkinson JM; Holcombe LJ; Soanes DM; Veneault-Fourrey C; Bhambra GK; Talbot NJ
    Biochem Soc Trans; 2005 Apr; 33(Pt 2):384-8. PubMed ID: 15787612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea.
    Caracuel-Rios Z; Talbot NJ
    Curr Opin Microbiol; 2007 Aug; 10(4):339-45. PubMed ID: 17707684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The casein kinase MoYck1 regulates development, autophagy, and virulence in the rice blast fungus.
    Shi HB; Chen N; Zhu XM; Su ZZ; Wang JY; Lu JP; Liu XH; Lin FC
    Virulence; 2019 Dec; 10(1):719-733. PubMed ID: 31392921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.
    Skamnioti P; Gurr SJ
    Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae.
    Khan IA; Ning G; Liu X; Feng X; Lin F; Lu J
    Microbiol Res; 2015 Sep; 178():51-8. PubMed ID: 26302847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae.
    Liu TB; Liu XH; Lu JP; Zhang L; Min H; Lin FC
    Autophagy; 2010 Jan; 6(1):74-85. PubMed ID: 19923912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease.
    Kershaw MJ; Talbot NJ
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15967-72. PubMed ID: 19717456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagic fungal cell death is necessary for infection by the rice blast fungus.
    Veneault-Fourrey C; Barooah M; Egan M; Wakley G; Talbot NJ
    Science; 2006 Apr; 312(5773):580-3. PubMed ID: 16645096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagic cell death and its importance for fungal developmental biology and pathogenesis.
    Veneault-Fourrey C; Talbot NJ
    Autophagy; 2007; 3(2):126-7. PubMed ID: 17172805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infection-related development in the rice blast fungus Magnaporthe grisea.
    Hamer JE; Talbot NJ
    Curr Opin Microbiol; 1998 Dec; 1(6):693-7. PubMed ID: 10066544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea.
    Dixon KP; Xu JR; Smirnoff N; Talbot NJ
    Plant Cell; 1999 Oct; 11(10):2045-58. PubMed ID: 10521531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUMOylation is required for fungal development and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Lim YJ; Kim KT; Lee YH
    Mol Plant Pathol; 2018 Sep; 19(9):2134-2148. PubMed ID: 29633464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus.
    Chung H; Choi J; Park SY; Jeon J; Lee YH
    Fungal Genet Biol; 2013 Dec; 61():133-41. PubMed ID: 24140150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.