These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
521 related articles for article (PubMed ID: 17495930)
1. Redox-mediated substrate recognition by Sdp1 defines a new group of tyrosine phosphatases. Fox GC; Shafiq M; Briggs DC; Knowles PP; Collister M; Didmon MJ; Makrantoni V; Dickinson RJ; Hanrahan S; Totty N; Stark MJ; Keyse SM; McDonald NQ Nature; 2007 May; 447(7143):487-92. PubMed ID: 17495930 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. Hahn JS; Thiele DJ J Biol Chem; 2002 Jun; 277(24):21278-84. PubMed ID: 11923319 [TBL] [Abstract][Full Text] [Related]
3. Structure and function of the protein tyrosine phosphatases. Fauman EB; Saper MA Trends Biochem Sci; 1996 Nov; 21(11):413-7. PubMed ID: 8987394 [TBL] [Abstract][Full Text] [Related]
4. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae. Palacios L; Dickinson RJ; Sacristán-Reviriego A; Didmon MP; Marín MJ; Martín H; Keyse SM; Molina M J Biol Chem; 2011 Dec; 286(49):42037-42050. PubMed ID: 22006927 [TBL] [Abstract][Full Text] [Related]
5. A conserved non-canonical docking mechanism regulates the binding of dual specificity phosphatases to cell integrity mitogen-activated protein kinases (MAPKs) in budding and fission yeasts. Sacristán-Reviriego A; Madrid M; Cansado J; Martín H; Molina M PLoS One; 2014; 9(1):e85390. PubMed ID: 24465549 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase. Guan KL; Butch E J Biol Chem; 1995 Mar; 270(13):7197-203. PubMed ID: 7535768 [TBL] [Abstract][Full Text] [Related]
7. Mitogen-Activated Protein Kinase Phosphatases (MKPs) in Fungal Signaling: Conservation, Function, and Regulation. González-Rubio G; Fernández-Acero T; Martín H; Molina M Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30959830 [TBL] [Abstract][Full Text] [Related]
8. Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways. Sacristán-Reviriego A; Martín H; Molina M Fungal Genet Biol; 2015 Apr; 77():1-11. PubMed ID: 25736922 [TBL] [Abstract][Full Text] [Related]
9. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Shen Y; Luche R; Wei B; Gordon ML; Diltz CD; Tonks NK Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13613-8. PubMed ID: 11717427 [TBL] [Abstract][Full Text] [Related]
10. Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5. Marín MJ; Flández M; Bermejo C; Arroyo J; Martín H; Molina M Mol Genet Genomics; 2009 Mar; 281(3):345-59. PubMed ID: 19123063 [TBL] [Abstract][Full Text] [Related]
11. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Denu JM; Tanner KG Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949 [TBL] [Abstract][Full Text] [Related]
12. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. Slack DN; Seternes OM; Gabrielsen M; Keyse SM J Biol Chem; 2001 May; 276(19):16491-500. PubMed ID: 11278799 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Kim SJ; Jeong DG; Yoon TS; Son JH; Cho SK; Ryu SE; Kim JH Proteins; 2007 Jan; 66(1):239-45. PubMed ID: 17044055 [TBL] [Abstract][Full Text] [Related]
14. Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. Flández M; Cosano IC; Nombela C; Martín H; Molina M J Biol Chem; 2004 Mar; 279(12):11027-34. PubMed ID: 14703512 [TBL] [Abstract][Full Text] [Related]
15. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Barford D; Das AK; Egloff MP Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865 [TBL] [Abstract][Full Text] [Related]
16. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Zhan XL; Deschenes RJ; Guan KL Genes Dev; 1997 Jul; 11(13):1690-702. PubMed ID: 9224718 [TBL] [Abstract][Full Text] [Related]
17. Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis. Milholland KL; Waddey BT; Velázquez-Marrero KG; Lihon MV; Danzeisen EL; Naughton NH; Adams TJ; Schwartz JL; Liu X; Hall MC J Biol Chem; 2024 Sep; 300(9):107644. PubMed ID: 39122012 [TBL] [Abstract][Full Text] [Related]
18. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. Netto LES; Machado LESF FEBS J; 2022 Sep; 289(18):5480-5504. PubMed ID: 35490402 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution. Yokota T; Nara Y; Kashima A; Matsubara K; Misawa S; Kato R; Sugio S Proteins; 2007 Feb; 66(2):272-8. PubMed ID: 17068812 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. Tanoue T; Moriguchi T; Nishida E J Biol Chem; 1999 Jul; 274(28):19949-56. PubMed ID: 10391943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]