BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 17496050)

  • 1. Effects of monovalent anions of the hofmeister series on DPPC lipid bilayers Part II: modeling the perpendicular and lateral equation-of-state.
    Leontidis E; Aroti A; Belloni L; Dubois M; Zemb T
    Biophys J; 2007 Sep; 93(5):1591-607. PubMed ID: 17496050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of monovalent anions of the hofmeister series on DPPC lipid bilayers Part I: swelling and in-plane equations of state.
    Aroti A; Leontidis E; Dubois M; Zemb T
    Biophys J; 2007 Sep; 93(5):1580-90. PubMed ID: 17496051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid expanded monolayers of lipids as model systems to understand the anionic hofmeister series: 1. A tale of models.
    Leontidis E; Aroti A; Belloni L
    J Phys Chem B; 2009 Feb; 113(5):1447-59. PubMed ID: 19143560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sodium salts of lyotropic anions on low-temperature, ordered lipid monolayers.
    Christoforou M; Leontidis E; Brezesinski G
    J Phys Chem B; 2012 Dec; 116(50):14602-12. PubMed ID: 23194379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures.
    Vierl U; Löbbecke L; Nagel N; Cevc G
    Biophys J; 1994 Sep; 67(3):1067-79. PubMed ID: 7811917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations.
    Sachs JN; Woolf TB
    J Am Chem Soc; 2003 Jul; 125(29):8742-3. PubMed ID: 12862466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension.
    Sonne J; Jensen MØ; Hansen FY; Hemmingsen L; Peters GH
    Biophys J; 2007 Jun; 92(12):4157-67. PubMed ID: 17400696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase.
    McIntosh TJ; Simon SA
    Biochemistry; 1993 Aug; 32(32):8374-84. PubMed ID: 8347634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swelling of phospholipids by monovalent salt.
    Petrache HI; Tristram-Nagle S; Harries D; Kucerka N; Nagle JF; Parsegian VA
    J Lipid Res; 2006 Feb; 47(2):302-9. PubMed ID: 16267342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers.
    Ge M; Freed JH
    Biophys J; 1993 Nov; 65(5):2106-23. PubMed ID: 7507719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct imaging of salt effects on lipid bilayer ordering at sub-molecular resolution.
    Ferber UM; Kaggwa G; Jarvis SP
    Eur Biophys J; 2011 Mar; 40(3):329-38. PubMed ID: 21153636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations.
    Sachs JN; Nanda H; Petrache HI; Woolf TB
    Biophys J; 2004 Jun; 86(6):3772-82. PubMed ID: 15189873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt screening and specific ion adsorption determine neutral-lipid membrane interactions.
    Petrache HI; Zemb T; Belloni L; Parsegian VA
    Proc Natl Acad Sci U S A; 2006 May; 103(21):7982-7. PubMed ID: 16702553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field.
    Chandrasekhar I; Kastenholz M; Lins RD; Oostenbrink C; Schuler LD; Tieleman DP; van Gunsteren WF
    Eur Biophys J; 2003 Mar; 32(1):67-77. PubMed ID: 12632209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of liquid crystal-forming molecules with phospholipid bilayers studied by molecular dynamics simulations.
    Kim EB; Lockwood N; Chopra M; Guzmán O; Abbott NL; de Pablo JJ
    Biophys J; 2005 Nov; 89(5):3141-58. PubMed ID: 16113112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model of an asymmetric DPPC/DPPS membrane: effect of asymmetry on the lipid properties. A molecular dynamics simulation study.
    López Cascales JJ; Otero TF; Smith BD; González C; Márquez M
    J Phys Chem B; 2006 Feb; 110(5):2358-63. PubMed ID: 16471825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt.
    Petrache HI; Tristram-Nagle S; Gawrisch K; Harries D; Parsegian VA; Nagle JF
    Biophys J; 2004 Mar; 86(3):1574-86. PubMed ID: 14990484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy.
    Garcia-Manyes S; Oncins G; Sanz F
    Biophys J; 2005 Sep; 89(3):1812-26. PubMed ID: 15980180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.