BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17496098)

  • 21. NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk.
    Tachon S; Brandsma JB; Yvon M
    Appl Environ Microbiol; 2010 Mar; 76(5):1311-9. PubMed ID: 20038695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer.
    Gu L; Xiao X; Zhao G; Kempen P; Zhao S; Liu J; Lee SY; Solem C
    Microb Biotechnol; 2023 Jun; 16(6):1277-1292. PubMed ID: 36860178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A protonmotive force drives ATP synthesis in bacteria.
    Maloney PC; Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon.
    Pedersen MB; Garrigues C; Tuphile K; Brun C; Vido K; Bennedsen M; Møllgaard H; Gaudu P; Gruss A
    J Bacteriol; 2008 Jul; 190(14):4903-11. PubMed ID: 18487342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extended heme promiscuity in the cyanobacterial cytochrome c oxidase: characterization of native complexes containing hemes A, O, and D, respectively.
    Fromwald S; Zoder R; Wastyn M; Lübben M; Peschek GA
    Arch Biochem Biophys; 1999 Jul; 367(1):122-8. PubMed ID: 10375407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between the presence of the citrate permease plasmid and high electron-donor surface properties of Lactococcus lactis ssp. lactis biovar. diacetylactis.
    Lý MH; Cavin JF; Cachon R; Lê TM; Belin JM; Waché Y
    FEMS Microbiol Lett; 2007 Mar; 268(2):166-70. PubMed ID: 17250762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY9714.
    Nantapong N; Kugimiya Y; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):187-93. PubMed ID: 15558275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth.
    Rezaïki L; Lamberet G; Derré A; Gruss A; Gaudu P
    Mol Microbiol; 2008 Mar; 67(5):947-57. PubMed ID: 18194159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.
    Vido K; Le Bars D; Mistou MY; Anglade P; Gruss A; Gaudu P
    J Bacteriol; 2004 Mar; 186(6):1648-57. PubMed ID: 14996795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of cytochrome-like respiration in streptococci.
    Ritchey TW; Seely HW
    J Gen Microbiol; 1976 Apr; 93(2):195-203. PubMed ID: 180234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glucose metabolism of lactic acid bacteria changed by quinone-mediated extracellular electron transfer.
    Yamazaki S; Kaneko T; Taketomo N; Kano K; Ikeda T
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2100-6. PubMed ID: 12450120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins.
    Wouters JA; Frenkiel H; de Vos WM; Kuipers OP; Abee T
    Appl Environ Microbiol; 2001 Nov; 67(11):5171-8. PubMed ID: 11679342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. II. Inference of the precisely timed control system regulating glycolysis.
    Dolatshahi S; Fonseca LL; Voit EO
    Mol Biosyst; 2016 Jan; 12(1):37-47. PubMed ID: 26609780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site.
    Imkamp F; Biegel E; Jayamani E; Buckel W; Müller V
    J Bacteriol; 2007 Nov; 189(22):8145-53. PubMed ID: 17873051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HrtBA and menaquinones control haem homeostasis in Lactococcus lactis.
    Joubert L; Derré-Bobillot A; Gaudu P; Gruss A; Lechardeur D
    Mol Microbiol; 2014 Aug; 93(4):823-33. PubMed ID: 25040434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain.
    Koch-Koerfges A; Pfelzer N; Platzen L; Oldiges M; Bott M
    Biochim Biophys Acta; 2013 Jun; 1827(6):699-708. PubMed ID: 23416842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically.
    Matsushita K; Yamada M; Shinagawa E; Adachi O; Ameyama M
    J Bacteriol; 1980 Jan; 141(1):389-92. PubMed ID: 6766443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation and conversion of oxygen metabolites by Lactococcus lactis subsp. lactis ATCC 19435 under different growth conditions.
    van Niel EW; Hofvendahl K; Hahn-Hägerdal B
    Appl Environ Microbiol; 2002 Sep; 68(9):4350-6. PubMed ID: 12200286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen taxis and proton motive force in Salmonella typhimurium.
    Shioi J; Taylor BL
    J Biol Chem; 1984 Sep; 259(17):10983-8. PubMed ID: 6381491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.