BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17496098)

  • 41. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow.
    Hellingwerf KJ; Michels PA; Dorpema JW; Konings WN
    Eur J Biochem; 1975 Jul; 55(2):397-406. PubMed ID: 1081452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase.
    Arioli S; Zambelli D; Guglielmetti S; De Noni I; Pedersen MB; Pedersen PD; Dal Bello F; Mora D
    Appl Environ Microbiol; 2013 Jan; 79(1):376-80. PubMed ID: 23064338
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antimicrobial mechanism of action of transferrins: selective inhibition of H+-ATPase.
    Andrés MT; Fierro JF
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4335-42. PubMed ID: 20625147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner.
    van Belkum MJ; Kok J; Venema G; Holo H; Nes IF; Konings WN; Abee T
    J Bacteriol; 1991 Dec; 173(24):7934-41. PubMed ID: 1744049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The application of pH-sensitive fluorescent dyes in lactic acid bacteria reveals distinct extrusion systems for unmodified and conjugated dyes.
    Glaasker E; Konings WN; Poolman B
    Mol Membr Biol; 1996; 13(3):173-81. PubMed ID: 8905646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis.
    Molenaar D; Bolhuis H; Abee T; Poolman B; Konings WN
    J Bacteriol; 1992 May; 174(10):3118-24. PubMed ID: 1577684
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A link between transport and plasma membrane redox system(s) in carrot cells.
    Misra PC; Craig TA; Crane FL
    J Bioenerg Biomembr; 1984 Apr; 16(2):143-52. PubMed ID: 6242153
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidative stress at high temperatures in Lactococcus lactis due to an insufficient supply of Riboflavin.
    Chen J; Shen J; Solem C; Jensen PR
    Appl Environ Microbiol; 2013 Oct; 79(19):6140-7. PubMed ID: 23913422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis.
    Cesselin B; Ali D; Gratadoux JJ; Gaudu P; Duwat P; Gruss A; El Karoui M
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2274-2281. PubMed ID: 19389779
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis.
    Zhao R; Zheng S; Duan C; Liu F; Yang L; Huo G
    FEBS Open Bio; 2013; 3():379-86. PubMed ID: 24251099
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of oxygen and heme on the development of a microbial respiratory system.
    Jacobs NJ; Maclosky ER; Conti SF
    J Bacteriol; 1967 Jan; 93(1):278-85. PubMed ID: 4289810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Getting high (OD) on heme.
    Christel Garrigues ; Johansen E; Pedersen MB; Møllgaard H; Sørensen KI; Gaudu P; Gruss A; Lamberet G
    Nat Rev Microbiol; 2006 Apr; 4(4):c2; author reply c3. PubMed ID: 17058350
    [No Abstract]   [Full Text] [Related]  

  • 53. The EstA esterase is responsible for the main capacity of Lactococcus lactis to synthesize short chain fatty acid esters in vitro.
    Nardi M; Fiez-Vandal C; Tailliez P; Monnet V
    J Appl Microbiol; 2002; 93(6):994-1002. PubMed ID: 12452955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of reducing agents on the acidification capacity and the proton motive force of Lactococcus lactis ssp. cremoris resting cells.
    Waché Y; Riondet C; Diviès C; Cachon R
    Bioelectrochemistry; 2002 Sep; 57(2):113-8. PubMed ID: 12160606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aerobic growth thermograms of Streptococcus lactis obtained with a complex medium containing glucose.
    Monk PR
    J Bacteriol; 1978 Aug; 135(2):373-8. PubMed ID: 98515
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane H+ conductance of Streptococcus lactis.
    Maloney PC
    J Bacteriol; 1979 Oct; 140(1):197-205. PubMed ID: 40951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Secondary transport of amino acids by membrane vesicles derived from lactic acid bacteria.
    Driessen AJ
    Antonie Van Leeuwenhoek; 1989 Aug; 56(2):139-60. PubMed ID: 2508549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioenergetics of the moderately halophilic bacterium Halobacillus halophilus: composition and regulation of the respiratory chain.
    Pade N; Köcher S; Roeßler M; Hänelt I; Müller V
    Appl Environ Microbiol; 2013 Jun; 79(12):3839-46. PubMed ID: 23584768
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Testosterone-dependent oxygen consumption in membrane vesicles of Pseudomonas testosteroni.
    Culos D; Watanabe M
    J Steroid Biochem; 1982 Jul; 17(1):67-9. PubMed ID: 7109594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scrutinizing a
    Gu L; Zhao S; Tadesse BT; Zhao G; Solem C
    Appl Environ Microbiol; 2024 May; 90(5):e0041424. PubMed ID: 38563750
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.