These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 17496968)
1. Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Arora NK; Kim MJ; Kang SC; Maheshwari DK Can J Microbiol; 2007 Feb; 53(2):207-12. PubMed ID: 17496968 [TBL] [Abstract][Full Text] [Related]
2. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Nagarajkumar M; Bhaskaran R; Velazhahan R Microbiol Res; 2004; 159(1):73-81. PubMed ID: 15160609 [TBL] [Abstract][Full Text] [Related]
3. Enzyme production by the mycoparasite Verticillium biguttatum against Rhizoctonia solani. McQuilken MP; Gemmell J Mycopathologia; 2004 Feb; 157(2):201-5. PubMed ID: 15119857 [TBL] [Abstract][Full Text] [Related]
4. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Limón MC; Chacón MR; Mejías R; Delgado-Jarana J; Rincón AM; Codón AC; Benítez T Appl Microbiol Biotechnol; 2004 Jun; 64(5):675-85. PubMed ID: 14740190 [TBL] [Abstract][Full Text] [Related]
5. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS Microbiol Res; 2000 Sep; 155(3):233-42. PubMed ID: 11061193 [TBL] [Abstract][Full Text] [Related]
6. Identification and antifungal assay of a wheat beta-1,3-glucanase. Liu B; Lu Y; Xin Z; Zhang Z Biotechnol Lett; 2009 Jul; 31(7):1005-10. PubMed ID: 19267236 [TBL] [Abstract][Full Text] [Related]
7. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Qualhato TF; Lopes FA; Steindorff AS; Brandão RS; Jesuino RS; Ulhoa CJ Biotechnol Lett; 2013 Sep; 35(9):1461-8. PubMed ID: 23690037 [TBL] [Abstract][Full Text] [Related]
8. Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Sindhu SS; Dadarwal KR Microbiol Res; 2001; 156(4):353-8. PubMed ID: 11770853 [TBL] [Abstract][Full Text] [Related]
9. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Afsharmanesh H; Ahmadzadeh M; Sharifi-Tehrani A Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1021-9. PubMed ID: 17390854 [TBL] [Abstract][Full Text] [Related]
10. Detection of phlD gene in some fluorescent pseudomonads isolated from Iran and its relative with antifungal activities. Afsharmanesh H; Ahmadzadeh M; Sharifi-Tehrani A; Javan-Nikkhah M; Ghazanfari K Commun Agric Appl Biol Sci; 2007; 72(4):941-50. PubMed ID: 18396832 [TBL] [Abstract][Full Text] [Related]
11. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Ko HS; Jin RD; Krishnan HB; Lee SB; Kim KY Curr Microbiol; 2009 Dec; 59(6):608-15. PubMed ID: 19727949 [TBL] [Abstract][Full Text] [Related]
13. Isolation and evaluation of bacteria and fungi as biological control agents against Rhizoctonia solani. Lahlali R; Bajii M; Jijakli MH Commun Agric Appl Biol Sci; 2007; 72(4):973-82. PubMed ID: 18396837 [TBL] [Abstract][Full Text] [Related]
14. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Olorunleke FE; Hua GK; Kieu NP; Ma Z; Höfte M Environ Microbiol Rep; 2015 Oct; 7(5):774-81. PubMed ID: 26085277 [TBL] [Abstract][Full Text] [Related]
15. Antifungal activity and expression patterns of extracellular chitinase and β-1,3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan. Hong SH; Song YS; Seo DJ; Kim KY; Jung WJ Microb Pathog; 2017 Sep; 110():159-164. PubMed ID: 28668604 [TBL] [Abstract][Full Text] [Related]
16. [Screening, identification, and biocontrol effect of antagonistic bacteria against Phytophthora capsici]. Mei XL; Zhao QY; Tan SY; Xu YC; Shen B; Shen QR Ying Yong Sheng Tai Xue Bao; 2010 Oct; 21(10):2652-8. PubMed ID: 21328956 [TBL] [Abstract][Full Text] [Related]
17. Detoxification of oxalic acid by pseudomonas fluorescens strain pfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Nagarajkumar M; Jayaraj J; Muthukrishnan S; Bhaskaran R; Velazhahan R Microbiol Res; 2005; 160(3):291-8. PubMed ID: 16035241 [TBL] [Abstract][Full Text] [Related]
18. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. Kruijt M; Tran H; Raaijmakers JM J Appl Microbiol; 2009 Aug; 107(2):546-56. PubMed ID: 19302489 [TBL] [Abstract][Full Text] [Related]
19. Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici. Nguyen XH; Naing KW; Lee YS; Kim YH; Moon JH; Kim KY J Basic Microbiol; 2015 Jan; 55(1):45-53. PubMed ID: 24554614 [TBL] [Abstract][Full Text] [Related]
20. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Liu CH; Chen X; Liu TT; Lian B; Gu Y; Caer V; Xue YR; Wang BT Appl Microbiol Biotechnol; 2007 Aug; 76(2):459-66. PubMed ID: 17534613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]