BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 17496974)

  • 1. Insight into heterogeneity in cell-surface hydrophobicity and ability to degrade hydrocarbons among cells of two hydrocarbon-degrading bacterial populations.
    Obuekwe CO; Al-Jadi ZK; Al-Saleh E
    Can J Microbiol; 2007 Feb; 53(2):252-60. PubMed ID: 17496974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces.
    Chakraborty S; Mukherji S; Mukherji S
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):101-8. PubMed ID: 20236810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative hydrocarbon utilization by hydrophobic and hydrophilic variants of Pseudomonas aeruginosa.
    Obuekwe CO; Al-Jadi ZK; Al-Saleh ES
    J Appl Microbiol; 2008 Dec; 105(6):1876-87. PubMed ID: 19120636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons.
    Mohanty S; Mukherji S
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):193-204. PubMed ID: 22089390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.
    Mnif S; Chamkha M; Sayadi S
    J Appl Microbiol; 2009 Sep; 107(3):785-94. PubMed ID: 19320948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential hydrophobic partitioning of cells of Pseudomonas aeruginosa gives rise to variants of increasing cell-surface hydrophobicity.
    Obuekwe CO; Al-Jadi ZK; Al-Saleh ES
    FEMS Microbiol Lett; 2007 May; 270(2):214-9. PubMed ID: 17391374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate.
    Hori K; Hiramatsu N; Nannbu M; Kanie K; Okochi M; Honda H; Watanabe H
    J Biosci Bioeng; 2009 Mar; 107(3):250-5. PubMed ID: 19269587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of Petroleum Hydrocarbons by
    Wang D; Lin J; Lin J; Wang W; Li S
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31438460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of hydrocarbon contamination by immobilized bacterial cells.
    Rahman RN; Ghaza FM; Salleh AB; Basri M
    J Microbiol; 2006 Jun; 44(3):354-9. PubMed ID: 16820766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cell-surface hydrophobicity and degradation characteristics of hydrophobic hydrocarbon degrading bacteria].
    Zhao Q; Zhang JY; Chen LZ; Zheng JX; Zhao L; Yin HM
    Huan Jing Ke Xue; 2005 Sep; 26(5):132-6. PubMed ID: 16366485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins.
    Kaczorek E; Chrzanowski L; Pijanowska A; Olszanowski A
    Bioresour Technol; 2008 Jul; 99(10):4285-91. PubMed ID: 17959375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of rhamnolipid on the biodegradation of n-hexadecane by microorganism and the cell surface hydrophobicity].
    Chen YJ; Wang HQ; Wang R; Yun Y
    Huan Jing Ke Xue; 2007 Sep; 28(9):2117-22. PubMed ID: 17990568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biodegradability of the components of natural hydrocarbon mixtures previously submitted to landfarming].
    Pucci GN; Pucci OH
    Rev Argent Microbiol; 2003; 35(2):62-8. PubMed ID: 12920985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills.
    Mittal A; Singh P
    Indian J Exp Biol; 2009 Sep; 47(9):760-5. PubMed ID: 19957890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3C.
    Wu RR; Dang Z; Yi XY; Yang C; Lu GN; Guo CL; Liu CQ
    J Hazard Mater; 2011 Feb; 186(2-3):978-83. PubMed ID: 21167642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil.
    Tang X; He LY; Tao XQ; Dang Z; Guo CL; Lu GN; Yi XY
    J Hazard Mater; 2010 Sep; 181(1-3):1158-62. PubMed ID: 20638971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation.
    Brakstad OG; Bonaunet K
    Biodegradation; 2006 Feb; 17(1):71-82. PubMed ID: 16453173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada.
    April TM; Foght JM; Currah RS
    Can J Microbiol; 2000 Jan; 46(1):38-49. PubMed ID: 10696470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains.
    Franzetti A; Bestetti G; Caredda P; La Colla P; Tamburini E
    FEMS Microbiol Ecol; 2008 Feb; 63(2):238-48. PubMed ID: 18070077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.