These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17497196)

  • 21. Roughness-dependent removal of settled spores of the green alga Ulva (syn. Enteromorpha) exposed to hydrodynamic forces from a water jet.
    Granhag LM; Finlay JA; Jonsson PR; Callow JA; Callow ME
    Biofouling; 2004 Apr; 20(2):117-22. PubMed ID: 15203965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean.
    Whalan S; Webster NS
    Sci Rep; 2014 Feb; 4():4072. PubMed ID: 24518965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper affects biofilm inductiveness to larval settlement of the serpulid polychaete Hydroides elegans (Haswell).
    Bao WY; Lee OO; Chung HC; Li M; Qian PY
    Biofouling; 2010 Jan; 26(1):119-28. PubMed ID: 20390562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion.
    Almeida JR; Vasconcelos V
    Biotechnol Adv; 2015; 33(3-4):343-57. PubMed ID: 25749324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing the settlement and attachment strength of pediveligers of Mytilus galloprovincialis by changing surface wettability and microtopography.
    Carl C; Poole AJ; Sexton BA; Glenn FL; Vucko MJ; Williams MR; Whalan S; de Nys R
    Biofouling; 2012; 28(2):175-86. PubMed ID: 22332795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prevention of marine biofouling using natural compounds from marine organisms.
    Armstrong E; Boyd KG; Burgess JG
    Biotechnol Annu Rev; 2000; 6():221-41. PubMed ID: 11193296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered antifouling microtopographies - effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva.
    Schumacher JF; Carman ML; Estes TG; Feinberg AW; Wilson LH; Callow ME; Callow JA; Finlay JA; Brennan AB
    Biofouling; 2007; 23(1-2):55-62. PubMed ID: 17453729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signalling molecules inducing metamorphosis in marine organisms.
    Rischer M; Guo H; Beemelmanns C
    Nat Prod Rep; 2022 Sep; 39(9):1833-1855. PubMed ID: 35822257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antifouling properties of 10beta-formamidokalihinol-A and kalihinol A isolated from the marine sponge Acanthella cavernosa.
    Yang LH; Lee OO; Jin T; Li XC; Qian PY
    Biofouling; 2006; 22(1-2):23-32. PubMed ID: 16551558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids.
    Schumacher JF; Aldred N; Callow ME; Finlay JA; Callow JA; Clare AS; Brennan AB
    Biofouling; 2007; 23(5-6):307-17. PubMed ID: 17852066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores.
    Schumacher JF; Long CJ; Callow ME; Finlay JA; Callow JA; Brennan AB
    Langmuir; 2008 May; 24(9):4931-7. PubMed ID: 18361532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms.
    Mitra S; Sana B; Mukherjee J
    Adv Biochem Eng Biotechnol; 2014; 146():163-205. PubMed ID: 24817086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current and emerging environmentally-friendly systems for fouling control in the marine environment.
    Gittens JE; Smith TJ; Suleiman R; Akid R
    Biotechnol Adv; 2013 Dec; 31(8):1738-53. PubMed ID: 24051087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling.
    Golberg K; Pavlov V; Marks RS; Kushmaro A
    Biofouling; 2013; 29(6):669-82. PubMed ID: 23777289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in modified antimicrobial peptides as marine antifouling material.
    Saha R; Bhattacharya D; Mukhopadhyay M
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112900. PubMed ID: 36252531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures.
    Doghri I; Rodrigues S; Bazire A; Dufour A; Akbar D; Sopena V; Sablé S; Lanneluc I
    BMC Microbiol; 2015 Oct; 15():231. PubMed ID: 26498445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Realizing the promises of marine biotechnology.
    Luiten EE; Akkerman I; Koulman A; Kamermans P; Reith H; Barbosa MJ; Sipkema D; Wijffels RH
    Biomol Eng; 2003 Jul; 20(4-6):429-39. PubMed ID: 12919830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyomelanin from Pseudoalteromonas lipolytica reduces biofouling.
    Zeng Z; Guo XP; Cai X; Wang P; Li B; Yang JL; Wang X
    Microb Biotechnol; 2017 Nov; 10(6):1718-1731. PubMed ID: 28834245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact and control of biofouling in marine aquaculture: a review.
    Fitridge I; Dempster T; Guenther J; de Nys R
    Biofouling; 2012; 28(7):649-69. PubMed ID: 22775076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of hypoxia on biofilms and subsequently larval settlement of benthic invertebrates.
    Cheung SG; Chan CY; Po BH; Li AL; Leung JY; Qiu JW; Ang PO; Thiyagarajan V; Shin PK; Chiu JM
    Mar Pollut Bull; 2014 Aug; 85(2):418-24. PubMed ID: 24855975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.