These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 1749772)

  • 1. A 175-psec molecular dynamics simulation of camphor-bound cytochrome P-450cam.
    Paulsen MD; Ornstein RL
    Proteins; 1991; 11(3):184-204. PubMed ID: 1749772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD; Bass MB; Ornstein RL
    J Biomol Struct Dyn; 1991 Oct; 9(2):187-203. PubMed ID: 1741957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular dynamics analysis of protein structural elements.
    Post CB; Dobson CM; Karplus M
    Proteins; 1989; 5(4):337-54. PubMed ID: 2798410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization.
    Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y
    J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor.
    Schulze H; Hoa GH; Helms V; Wade RC; Jung C
    Biochemistry; 1996 Nov; 35(45):14127-38. PubMed ID: 8916898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):813-30. PubMed ID: 11061977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional solution structure and backbone dynamics of a variant of human interleukin-3.
    Feng Y; Klein BK; McWherter CA
    J Mol Biol; 1996 Jun; 259(3):524-41. PubMed ID: 8676386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular dynamics simulation of bacteriophage T4 lysozyme.
    Arnold GE; Ornstein RL
    Protein Eng; 1992 Oct; 5(7):703-14. PubMed ID: 1480623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of a sweet protein single-chain monellin determined by nuclear magnetic resonance and dynamical simulated annealing calculations.
    Lee SY; Lee JH; Chang HJ; Cho JM; Jung JW; Lee W
    Biochemistry; 1999 Feb; 38(8):2340-6. PubMed ID: 10029527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate mobility in a deeply buried active site: analysis of norcamphor bound to cytochrome P-450cam as determined by a 201-psec molecular dynamics simulation.
    Bass MB; Paulsen MD; Ornstein RL
    Proteins; 1992 May; 13(1):26-37. PubMed ID: 1594575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution solution NMR structure of the Z domain of staphylococcal protein A.
    Tashiro M; Tejero R; Zimmerman DE; Celda B; Nilsson B; Montelione GT
    J Mol Biol; 1997 Oct; 272(4):573-90. PubMed ID: 9325113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants.
    Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E
    J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala.
    Raag R; Martinis SA; Sligar SG; Poulos TL
    Biochemistry; 1991 Dec; 30(48):11420-9. PubMed ID: 1742281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics of sickle and normal hemoglobins.
    Prabhakaran M; Johnson ME
    Biopolymers; 1993 May; 33(5):735-42. PubMed ID: 8343575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary and secondary structural patterns in eukaryotic cytochrome P-450 families correspond to structures of the helix-rich domain of Pseudomonas putida cytochrome P-450cam. Indications for a similar overall topology.
    Ouzounis CA; Melvin WT
    Eur J Biochem; 1991 Jun; 198(2):307-15. PubMed ID: 2040297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The refined X-ray structure of muconate lactonizing enzyme from Pseudomonas putida PRS2000 at 1.85 A resolution.
    Helin S; Kahn PC; Guha BL; Mallows DG; Goldman A
    J Mol Biol; 1995 Dec; 254(5):918-41. PubMed ID: 7500361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of the complex between acyl-coenzyme A binding protein and palmitoyl-coenzyme A.
    Kragelund BB; Andersen KV; Madsen JC; Knudsen J; Poulsen FM
    J Mol Biol; 1993 Apr; 230(4):1260-77. PubMed ID: 8503960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus.
    Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL
    J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.