BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17497768)

  • 1. Theoretical study of the catalytic mechanism and metal-ion dependence of peptide deformylase.
    Wu XH; Quan JM; Wu YD
    J Phys Chem B; 2007 Jun; 111(22):6236-44. PubMed ID: 17497768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic mechanism and metal specificity of bacterial peptide deformylase: a density functional theory QM/MM study.
    Xiao C; Zhang Y
    J Phys Chem B; 2007 Jun; 111(22):6229-35. PubMed ID: 17503802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the metal ion in formyl-peptide bond hydrolysis by a peptide deformylase active site model.
    Leopoldini M; Russo N; Toscano M
    J Phys Chem B; 2006 Jan; 110(2):1063-72. PubMed ID: 16471643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study.
    Dong M; Liu H
    J Phys Chem B; 2008 Aug; 112(33):10280-90. PubMed ID: 18651766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron center, substrate recognition and mechanism of peptide deformylase.
    Becker A; Schlichting I; Kabsch W; Groche D; Schultz S; Wagner AF
    Nat Struct Biol; 1998 Dec; 5(12):1053-8. PubMed ID: 9846875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxo-iron mediated deformylation in sterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Am Chem Soc; 2010 Aug; 132(30):10293-305. PubMed ID: 20662512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of E. coli peptide deformylase bound to formate: insight into the preference for Fe2+ over Zn2+ as the active site metal.
    Jain R; Hao B; Liu RP; Chan MK
    J Am Chem Soc; 2005 Apr; 127(13):4558-9. PubMed ID: 15796505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism of yeast cytosine deaminase: an ONIOM computational study.
    Sklenak S; Yao L; Cukier RI; Yan H
    J Am Chem Soc; 2004 Nov; 126(45):14879-89. PubMed ID: 15535715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure, bonding, spectroscopy and energetics of Fe-dependent nitrile hydratase active-site models.
    Greene SN; Richards NG
    Inorg Chem; 2006 Jan; 45(1):17-36. PubMed ID: 16390037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics and density functional theory studies of substrate binding and catalysis of human brain aspartoacylase.
    Zhang CH; Gao JY; Chen ZQ; Xue Y
    J Mol Graph Model; 2010 Jun; 28(8):799-806. PubMed ID: 20227313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Which one among Zn(II), Co(II), Mn(II), and Fe(II) is the most efficient ion for the methionine aminopeptidase catalyzed reaction?
    Leopoldini M; Russo N; Toscano M
    J Am Chem Soc; 2007 Jun; 129(25):7776-84. PubMed ID: 17523636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H; Brothers EN; Merz KM
    J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of peptide deformylase activity by metal cations.
    Ragusa S; Blanquet S; Meinnel T
    J Mol Biol; 1998 Jul; 280(3):515-23. PubMed ID: 9665853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site.
    Groche D; Becker A; Schlichting I; Kabsch W; Schultz S; Wagner AF
    Biochem Biophys Res Commun; 1998 May; 246(2):342-6. PubMed ID: 9610360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principle and mechanism of direct porphyrin metalation: joint experimental and theoretical investigation.
    Shubina TE; Marbach H; Flechtner K; Kretschmann A; Jux N; Buchner F; Steinrück HP; Clark T; Gottfried JM
    J Am Chem Soc; 2007 Aug; 129(30):9476-83. PubMed ID: 17625856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of 4-nitrophenyl acetate by a (N2S(thiolate))zinc hydroxide complex: a model of the catalytically active intermediate for the zinc form of peptide deformylase.
    diTargiani RC; Chang S; Salter MH; Hancock RD; Goldberg DP
    Inorg Chem; 2003 Sep; 42(19):5825-36. PubMed ID: 12971750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133.
    Rajagopalan PT; Grimme S; Pei D
    Biochemistry; 2000 Feb; 39(4):779-90. PubMed ID: 10651644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.
    Kozmon S; Tvaroska I
    J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.