BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17497857)

  • 1. Transition state analysis of acid-catalyzed dAMP hydrolysis.
    McCann JA; Berti PJ
    J Am Chem Soc; 2007 Jun; 129(22):7055-64. PubMed ID: 17497857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-state analysis of the DNA repair enzyme MutY.
    McCann JA; Berti PJ
    J Am Chem Soc; 2008 Apr; 130(17):5789-97. PubMed ID: 18393424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy.
    Lee JK; Bain AD; Berti PJ
    J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition state analysis of acid-catalyzed hydrolysis of an enol ether, enolpyruvylshikimate 3-phosphate (EPSP).
    Lou M; Gilpin ME; Burger SK; Malik AM; Gawuga V; Popović V; Capretta A; Berti PJ
    J Am Chem Soc; 2012 Aug; 134(31):12947-57. PubMed ID: 22765168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of N7 protonation on the mechanism of the N-glycosidic bond hydrolysis in 2'-deoxyguanosine. A theoretical study.
    Rios-Font R; Rodríguez-Santiago L; Bertran J; Sodupe M
    J Phys Chem B; 2007 May; 111(21):6071-7. PubMed ID: 17477565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases.
    Lewandowicz A; Schramm VL
    Biochemistry; 2004 Feb; 43(6):1458-68. PubMed ID: 14769022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of cellulose hydrolysis by inverting GH8 endoglucanases: a QM/MM metadynamics study.
    Petersen L; Ardèvol A; Rovira C; Reilly PJ
    J Phys Chem B; 2009 May; 113(20):7331-9. PubMed ID: 19402614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical examination of Mg(2+)-mediated hydrolysis of a phosphodiester linkage as proposed for the hammerhead ribozyme.
    Torres RA; Himo F; Bruice TC; Noodleman L; Lovell T
    J Am Chem Soc; 2003 Aug; 125(32):9861-7. PubMed ID: 12904054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition state analysis of enolpyruvylshikimate 3-phosphate (EPSP) synthase (AroA)-catalyzed EPSP hydrolysis.
    Lou M; Burger SK; Gilpin ME; Gawuga V; Capretta A; Berti PJ
    J Am Chem Soc; 2012 Aug; 134(31):12958-69. PubMed ID: 22765279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of nucleotides with specific radiolabels in ribose. Primary 14C and secondary 3H kinetic isotope effects on acid-catalyzed glycosidic bond hydrolysis of AMP, dAMP, and inosine.
    Parkin DW; Leung HB; Schramm VL
    J Biol Chem; 1984 Aug; 259(15):9411-7. PubMed ID: 6746654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states.
    Zhou GC; Parikh SL; Tyler PC; Evans GB; Furneaux RH; Zubkova OV; Benjes PA; Schramm VL
    J Am Chem Soc; 2004 May; 126(18):5690-8. PubMed ID: 15125661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote mutations alter transition-state structure of human purine nucleoside phosphorylase.
    Luo M; Li L; Schramm VL
    Biochemistry; 2008 Feb; 47(8):2565-76. PubMed ID: 18281957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A direct comparison of reactivity and mechanism in the gas phase and in solution.
    Garver JM; Fang YR; Eyet N; Villano SM; Bierbaum VM; Westaway KC
    J Am Chem Soc; 2010 Mar; 132(11):3808-14. PubMed ID: 20187638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear free energy relationship and kinetic isotope effects as measures for the transition state variation. A computational study.
    Ammal SC; Mishima M; Yamataka H
    J Org Chem; 2003 Oct; 68(20):7772-8. PubMed ID: 14510554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleophilic participation in the transition state for human thymidine phosphorylase.
    Birck MR; Schramm VL
    J Am Chem Soc; 2004 Mar; 126(8):2447-53. PubMed ID: 14982453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical analysis of the free-energy profile of the different pathways in the alkaline hydrolysis of methyl formate in aqueous solution.
    Pliego JR; Riveros JM
    Chemistry; 2002 Apr; 8(8):1945-53. PubMed ID: 12007105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.