These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17498645)

  • 1. Essential amino acid residues in the central transmembrane domains and loops for energy coupling of Streptomyces coelicolor A3(2) H+-pyrophosphatase.
    Hirono M; Nakanishi Y; Maeshima M
    Biochim Biophys Acta; 2007 Jul; 1767(7):930-9. PubMed ID: 17498645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of amino acid residues participating in the energy coupling and proton transport of Streptomyces coelicolor A3(2) H+-pyrophosphatase.
    Hirono M; Nakanishi Y; Maeshima M
    Biochim Biophys Acta; 2007 Dec; 1767(12):1401-11. PubMed ID: 17964530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional enhancement by single-residue substitution of Streptomyces coelicolor A3(2) H+-translocating pyrophosphatase.
    Hirono M; Maeshima M
    J Biochem; 2009 Nov; 146(5):617-21. PubMed ID: 19628678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis.
    Mimura H; Nakanishi Y; Hirono M; Maeshima M
    J Biol Chem; 2004 Aug; 279(33):35106-12. PubMed ID: 15187077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure.
    Asaoka M; Segami S; Maeshima M
    J Biochem; 2014 Dec; 156(6):333-44. PubMed ID: 25070903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase.
    Van RC; Pan YJ; Hsu SH; Huang YT; Hsiao YY; Pan RL
    Biochim Biophys Acta; 2005 Aug; 1709(1):84-94. PubMed ID: 16018964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomerization of H(+)-pyrophosphatase and its structural and functional consequences.
    Mimura H; Nakanishi Y; Maeshima M
    Biochim Biophys Acta; 2005 Jul; 1708(3):393-403. PubMed ID: 15953583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor and its implications for redox control and enzyme structure.
    Mimura H; Nakanishi Y; Maeshima M
    FEBS Lett; 2005 Jul; 579(17):3625-31. PubMed ID: 15963991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase.
    Hsiao YY; Pan YJ; Hsu SH; Huang YT; Liu TH; Lee CH; Lee CH; Liu PF; Chang WC; Wang YK; Chien LF; Pan RL
    Biochim Biophys Acta; 2007 Jul; 1767(7):965-73. PubMed ID: 17543272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.
    Hsiao YY; Van RC; Hung SH; Lin HH; Pan RL
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):190-9. PubMed ID: 14871497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of inorganic pyrophosphatase from Helicobacter pylori.
    Wu CA; Lokanath NK; Kim DY; Park HJ; Hwang HY; Kim ST; Suh SW; Kim KK
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1459-64. PubMed ID: 16239722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.
    Huang YT; Liu TH; Lin SM; Chen YW; Pan YJ; Lee CH; Sun YJ; Tseng FG; Pan RL
    J Biol Chem; 2013 Jul; 288(27):19312-20. PubMed ID: 23720778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase.
    Lee CH; Chen YW; Huang YT; Pan YJ; Lee CH; Lin SM; Huang LK; Lo YY; Huang YF; Hsu YD; Yen SC; Hwang JK; Pan RL
    J Membr Biol; 2013 Dec; 246(12):959-66. PubMed ID: 24121627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana.
    Zancani M; Skiera LA; Sanders D
    Biochim Biophys Acta; 2007 Feb; 1768(2):311-6. PubMed ID: 17113565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum.
    Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R
    J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase.
    Hsu SH; Lo YY; Liu TH; Pan YJ; Huang YT; Sun YJ; Hung CC; Tseng FG; Yang CW; Pan RL
    J Biol Chem; 2015 Jan; 290(2):1197-209. PubMed ID: 25451931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of conserved polar residues in the transmembrane domain of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia coli.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1999 Mar; 363(1):182-90. PubMed ID: 10049513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide.
    Zhen RG; Kim EJ; Rea PA
    J Biol Chem; 1997 Aug; 272(35):22340-8. PubMed ID: 9268385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel inorganic pyrophosphatase in Thermococcus onnurineus NA1.
    Lee HS; Cho Y; Kim YJ; Lho TO; Cha SS; Lee JH; Kang SG
    FEMS Microbiol Lett; 2009 Nov; 300(1):68-74. PubMed ID: 19744243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.