These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17498731)

  • 1. Controlled synthesis of alpha-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties.
    Zeng S; Tang K; Li T
    J Colloid Interface Sci; 2007 Aug; 312(2):513-21. PubMed ID: 17498731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties.
    Lian J; Duan X; Ma J; Peng P; Kim T; Zheng W
    ACS Nano; 2009 Nov; 3(11):3749-61. PubMed ID: 19877695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties.
    Liu L; Kou HZ; Mo W; Liu H; Wang Y
    J Phys Chem B; 2006 Aug; 110(31):15218-23. PubMed ID: 16884238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine.
    Li Z; Lai X; Wang H; Mao D; Xing C; Wang D
    Nanotechnology; 2009 Jun; 20(24):245603. PubMed ID: 19471078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile route to alpha-FeOOH and alpha-Fe2O3 nanorods and magnetic property of alpha-Fe2O3 nanorods.
    Tang B; Wang G; Zhuo L; Ge J; Cui L
    Inorg Chem; 2006 Jun; 45(13):5196-200. PubMed ID: 16780344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and magnetic properties of oriented alpha-Fe2O3 nanorods.
    Wu JJ; Lee YL; Chiang HH; Wong DK
    J Phys Chem B; 2006 Sep; 110(37):18108-11. PubMed ID: 16970420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous α-Fe2O3 nanospheres: structural evolution and investigation of magnetic properties.
    Li G; Liu M; Kou HZ
    Chemistry; 2011 Apr; 17(15):4323-9. PubMed ID: 21387429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties.
    Chen H; Zhao Y; Yang M; He J; Chu PK; Zhang J; Wu S
    Anal Chim Acta; 2010 Feb; 659(1-2):266-73. PubMed ID: 20103134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing.
    Gou X; Wang G; Kong X; Wexler D; Horvat J; Yang J; Park J
    Chemistry; 2008; 14(19):5996-6002. PubMed ID: 18435446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.
    Boguslavsky Y; Margel S
    J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave solid-state synthesis of LiV(3)O(8) as cathode material for lithium batteries.
    Yang G; Wang G; Hou W
    J Phys Chem B; 2005 Jun; 109(22):11186-96. PubMed ID: 16852365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties.
    Zhu H; Yang D; Yu G; Zhang H; Jin D; Yao K
    J Phys Chem B; 2006 Apr; 110(15):7631-4. PubMed ID: 16610852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3.
    Lu L; Li L; Wang X; Li G
    J Phys Chem B; 2005 Sep; 109(36):17151-6. PubMed ID: 16853187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of hexagonal BaTa2O6 nanorods and influence of defects on the photocatalytic activity.
    Xu T; Zhao X; Zhu Y
    J Phys Chem B; 2006 Dec; 110(51):25825-32. PubMed ID: 17181227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis and properties of controlled α-Fe2O3 nanostructures in HEPES solution.
    Li H; Lu Z; Li Q; So MH; Che CM; Chen R
    Chem Asian J; 2011 Sep; 6(9):2320-31. PubMed ID: 21661117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods.
    Wang X; Li Y
    Chemistry; 2003 Jan; 9(1):300-6. PubMed ID: 12506386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.
    Cho S; Kim S; Lee KH
    J Colloid Interface Sci; 2011 Sep; 361(2):436-42. PubMed ID: 21708385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.
    Xi G; Ye J
    Inorg Chem; 2010 Mar; 49(5):2302-9. PubMed ID: 20088491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
    Li Z; Kübel C; Pârvulescu VI; Richards R
    ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.