These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17499551)

  • 1. Hepatitis C virus contact map prediction based on binary encoding strategy.
    Zhang GZ; Han K
    Comput Biol Chem; 2007 Jun; 31(3):233-8. PubMed ID: 17499551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks.
    Shepherd AJ; Gorse D; Thornton JM
    Proteins; 2003 Feb; 50(2):290-302. PubMed ID: 12486723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. euHCVdb: the European hepatitis C virus database.
    Combet C; Garnier N; Charavay C; Grando D; Crisan D; Lopez J; Dehne-Garcia A; Geourjon C; Bettler E; Hulo C; Le Mercier P; Bartenschlager R; Diepolder H; Moradpour D; Pawlotsky JM; Rice CM; Trépo C; Penin F; Deléage G
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D363-6. PubMed ID: 17142229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An introduction to protein contact prediction.
    Hamilton N; Huber T
    Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-residue interactions in protein folding and stability.
    Gromiha MM; Selvaraj S
    Prog Biophys Mol Biol; 2004 Oct; 86(2):235-77. PubMed ID: 15288760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced protein fold recognition using a structural alphabet.
    Deschavanne P; Tufféry P
    Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolved cellular automata for protein secondary structure prediction imitate the determinants for folding observed in nature.
    Chopra P; Bender A
    In Silico Biol; 2007; 7(1):87-93. PubMed ID: 17688429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pKNOT: the protein KNOT web server.
    Lai YL; Yen SC; Yu SH; Hwang JK
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W420-4. PubMed ID: 17526524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein loop geometries in solution.
    Rapp CS; Strauss T; Nederveen A; Fuentes G
    Proteins; 2007 Oct; 69(1):69-74. PubMed ID: 17588228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning protein secondary structure from sequential and relational data.
    Ceroni A; Frasconi P; Pollastri G
    Neural Netw; 2005 Oct; 18(8):1029-39. PubMed ID: 16182513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YASSPP: better kernels and coding schemes lead to improvements in protein secondary structure prediction.
    Karypis G
    Proteins; 2006 Aug; 64(3):575-86. PubMed ID: 16763996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme.
    Zhang GZ; Huang DS
    J Comput Aided Mol Des; 2004 Dec; 18(12):797-810. PubMed ID: 16075311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm.
    Sadeghi M; Parto S; Arab S; Ranjbar B
    FEBS Lett; 2005 Jun; 579(16):3397-400. PubMed ID: 15936021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.