BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17499551)

  • 21. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CSSP2: an improved method for predicting contact-dependent secondary structure propensity.
    Yoon S; Welsh WJ; Jung H; Yoo YD
    Comput Biol Chem; 2007 Oct; 31(5-6):373-7. PubMed ID: 17644485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-protein interactions: modeling the hepatitis C virus ion channel p7.
    Patargias G; Zitzmann N; Dwek R; Fischer WB
    J Med Chem; 2006 Jan; 49(2):648-55. PubMed ID: 16420050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein.
    Lara J; Wohlhueter RM; Dimitrova Z; Khudyakov YE
    Bioinformatics; 2008 Sep; 24(17):1858-64. PubMed ID: 18628290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M; Koch O; Klebe G; Schneider G
    Proteins; 2009 Feb; 74(2):344-52. PubMed ID: 18618702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contact patterns between helices and strands of sheet define protein folding patterns.
    Kamat AP; Lesk AM
    Proteins; 2007 Mar; 66(4):869-76. PubMed ID: 17206659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Simulation of alpha-helix and beta-hairpin formation in water-soluble proteins by the code physics method].
    Shestopalov BV
    Tsitologiia; 2007; 49(7):594-600. PubMed ID: 17918344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncover the conserved property underlying sequence-distant and structure-similar proteins.
    Gao J; Li Z
    Biopolymers; 2010 Apr; 93(4):340-7. PubMed ID: 19890963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method for protein accessibility prediction based on residue types and conformational states.
    Zarei R; Arab S; Sadeghi M
    Comput Biol Chem; 2007 Oct; 31(5-6):384-8. PubMed ID: 17888743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution and similarity evaluation of protein structures in contact map space.
    Gupta N; Mangal N; Biswas S
    Proteins; 2005 May; 59(2):196-204. PubMed ID: 15726585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the efficiency of evolutionary change-based and side chain orientation-based fold recognition potentials.
    Vishnepolsky B; Managadze G; Pirtskhalava M
    Proteins; 2008 Jun; 71(4):1863-78. PubMed ID: 18175309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variable predictive model based classification algorithm for effective separation of protein structural classes.
    Raghuraj R; Lakshminarayanan S
    Comput Biol Chem; 2008 Aug; 32(4):302-6. PubMed ID: 18462997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of FTTP to alpha-helix or beta-strand motifs.
    Yang J; Dong XC; Leng Y
    J Theor Biol; 2006 Sep; 242(1):199-219. PubMed ID: 16616204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HSEpred: predict half-sphere exposure from protein sequences.
    Song J; Tan H; Takemoto K; Akutsu T
    Bioinformatics; 2008 Jul; 24(13):1489-97. PubMed ID: 18467349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disulfide connectivity prediction with 70% accuracy using two-level models.
    Chen BJ; Tsai CH; Chan CH; Kao CY
    Proteins; 2006 Jul; 64(1):246-52. PubMed ID: 16615141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contact prediction using mutual information and neural nets.
    Shackelford G; Karplus K
    Proteins; 2007; 69 Suppl 8():159-64. PubMed ID: 17932918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FRalanyzer: a tool for functional analysis of fold-recognition sequence-structure alignments.
    Saini HK; Fischer D
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W499-502. PubMed ID: 17537819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.