BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 17499722)

  • 1. ClpP: a distinctive family of cylindrical energy-dependent serine proteases.
    Yu AY; Houry WA
    FEBS Lett; 2007 Jul; 581(19):3749-57. PubMed ID: 17499722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation.
    Gribun A; Kimber MS; Ching R; Sprangers R; Fiebig KM; Houry WA
    J Biol Chem; 2005 Apr; 280(16):16185-96. PubMed ID: 15701650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.
    Singh SK; Rozycki J; Ortega J; Ishikawa T; Lo J; Steven AC; Maurizi MR
    J Biol Chem; 2001 Aug; 276(31):29420-9. PubMed ID: 11346657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases.
    Liu K; Ologbenla A; Houry WA
    Crit Rev Biochem Mol Biol; 2014; 49(5):400-12. PubMed ID: 24915503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the Clp protein degradation machinery.
    Xu X; Wang Y; Huang W; Li D; Deng Z; Long F
    mBio; 2024 Apr; 15(4):e0003124. PubMed ID: 38501868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis.
    Wang J; Hartling JA; Flanagan JM
    Cell; 1997 Nov; 91(4):447-56. PubMed ID: 9390554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective, energy-dependent proteolysis in Escherichia coli.
    Gottesman S; Wickner S; Jubete Y; Singh SK; Kessel M; Maurizi M
    Cold Spring Harb Symp Quant Biol; 1995; 60():533-48. PubMed ID: 8824426
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP.
    Grimaud R; Kessel M; Beuron F; Steven AC; Maurizi MR
    J Biol Chem; 1998 May; 273(20):12476-81. PubMed ID: 9575205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP.
    Singh SK; Grimaud R; Hoskins JR; Wickner S; Maurizi MR
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8898-903. PubMed ID: 10922052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery.
    Ripstein ZA; Vahidi S; Houry WA; Rubinstein JL; Kay LE
    Elife; 2020 Jan; 9():. PubMed ID: 31916936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent proteases that also chaperone protein biogenesis.
    Suzuki CK; Rep M; van Dijl JM; Suda K; Grivell LA; Schatz G
    Trends Biochem Sci; 1997 Apr; 22(4):118-23. PubMed ID: 9149530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bacterial ClpX protease structure and function--a review].
    Wang L; Xie J
    Wei Sheng Wu Xue Bao; 2010 Oct; 50(10):1281-7. PubMed ID: 21141460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.