These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17499836)

  • 1. Superparamagnetic nanoparticles in tap water.
    Senftle FE; Thorpe AN; Grant JR; Barkatt A
    Water Res; 2007 Jul; 41(13):3005-11. PubMed ID: 17499836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and particle size of superparamagnetic corrosion products in tap water.
    Barkatt A; Pulvirenti AL; Adel-Hadadi MA; Viragh C; Senftle FE; Thorpe AN; Grant JR
    Water Res; 2009 Jul; 43(13):3319-25. PubMed ID: 19523663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and magnetic properties of Fe and Co nanoparticles embedded in powdered Al2O3.
    Santini O; de Moraes AR; Mosca DH; de Souza PE; de Oliveira AJ; Marangoni R; Wypych F
    J Colloid Interface Sci; 2005 Sep; 289(1):63-70. PubMed ID: 16009218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration.
    Ingram DR; Kotsmar C; Yoon KY; Shao S; Huh C; Bryant SL; Milner TE; Johnston KP
    J Colloid Interface Sci; 2010 Nov; 351(1):225-32. PubMed ID: 20719327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel nanohybrids derived from the attachment of FePt nanoparticles on carbon nanotubes.
    Tsoufis T; Tomou A; Gournis D; Douvalis AP; Panagiotopoulos I; Kooi B; Georgakilas V; Arfaoui I; Bakas T
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5942-51. PubMed ID: 19198330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products.
    Gerke TL; Scheckel KG; Maynard JB
    Sci Total Environ; 2010 Nov; 408(23):5845-53. PubMed ID: 20863549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water.
    Shen YF; Tang J; Nie ZH; Wang YD; Ren Y; Zuo L
    Bioresour Technol; 2009 Sep; 100(18):4139-46. PubMed ID: 19414249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.
    Al-Jasser AO
    Water Res; 2007 Jan; 41(2):387-96. PubMed ID: 17140619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superparamagnetic Fe3O4SiO2 nanocomposites: enabling the tuning of both the iron oxide load and the size of the nanoparticles.
    Stjerndahl M; Andersson M; Hall HE; Pajerowski DM; Meisel MW; Duran RS
    Langmuir; 2008 Apr; 24(7):3532-6. PubMed ID: 18312010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.
    Meledandri CJ; Stolarczyk JK; Ghosh S; Brougham DF
    Langmuir; 2008 Dec; 24(24):14159-65. PubMed ID: 19053647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.
    Sarin P; Snoeyink VL; Bebee J; Jim KK; Beckett MA; Kriven WM; Clement JA
    Water Res; 2004 Mar; 38(5):1259-69. PubMed ID: 14975659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of retention efficiency of filters against nanoparticles in liquids using an aerosolization technique.
    Ling TY; Wang J; Pui DY
    Environ Sci Technol; 2010 Jan; 44(2):774-9. PubMed ID: 20000703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD.
    Kaegi R; Wagner T; Hetzer B; Sinnet B; Tzvetkov G; Boller M
    Water Res; 2008 May; 42(10-11):2778-86. PubMed ID: 18348895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations.
    Bahadur R; Russell LM
    J Chem Phys; 2008 Sep; 129(9):094508. PubMed ID: 19044878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.
    Boguslavsky Y; Margel S
    J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.
    Jun YW; Seo JW; Cheon J
    Acc Chem Res; 2008 Feb; 41(2):179-89. PubMed ID: 18281944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of steady and occluded water in drinking water distribution systems.
    Tong H; Zhao P; Zhang H; Tian Y; Chen X; Zhao W; Li M
    Chemosphere; 2015 Jan; 119():1141-1147. PubMed ID: 25460754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic poly(PEGMA-MAA) nanoparticles: photochemical preparation and potential application in drug delivery.
    Sun HW; Zhang LY; Zhu XJ; Wang XF
    J Biomater Sci Polym Ed; 2009; 20(12):1675-86. PubMed ID: 19723435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles.
    Bharde AA; Parikh RY; Baidakova M; Jouen S; Hannoyer B; Enoki T; Prasad BL; Shouche YS; Ogale S; Sastry M
    Langmuir; 2008 Jun; 24(11):5787-94. PubMed ID: 18454562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.