BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1506 related articles for article (PubMed ID: 17500463)

  • 1. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy.
    Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of adjoint and forward Monte Carlo based treatment planning for a realistic head phantom.
    Nievaart S; Moss R; Wittig A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S115-7. PubMed ID: 19375338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.
    Krstic D; Markovic VM; Jovanovic Z; Milenkovic B; Nikezic D; Atanackovic J
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):269-73. PubMed ID: 24435912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy.
    Takada K; Kumada H; Liem PH; Sakurai H; Sakae T
    Phys Med; 2016 Dec; 32(12):1846-1851. PubMed ID: 27889131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system.
    Lehmann J; Hartmann Siantar C; Wessol DE; Wemple CA; Nigg D; Cogliati J; Daly T; Descalle MA; Flickinger T; Pletcher D; Denardo G
    Phys Med Biol; 2005 Mar; 50(5):947-58. PubMed ID: 15798267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of the TAPIRO BNCT epithermal facility.
    Burn KW; Colli V; Curzio G; d'Errico F; Gambarini G; Rosi G; Scolari L
    Radiat Prot Dosimetry; 2004; 110(1-4):645-9. PubMed ID: 15353724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.
    Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S
    Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method of Monte Carlo simulation verification in hadron therapy with non-tissue equivalent detectors.
    Rosenfeld A; Wroe A; Carolan M; Cornelius I
    Radiat Prot Dosimetry; 2006; 119(1-4):487-90. PubMed ID: 16644965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.
    Schmitz T; Blaickner M; Schütz C; Wiehl N; Kratz JV; Bassler N; Holzscheiter MH; Palmans H; Sharpe P; Otto G; Hampel G
    Acta Oncol; 2010 Oct; 49(7):1165-9. PubMed ID: 20831509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parameter study to determine the optimal source neutron energy in boron neutron capture therapy of brain tumours.
    Nievaart VA; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Phys Med Biol; 2004 Sep; 49(18):4277-92. PubMed ID: 15509065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of dose components in head phantom for boron neutron capture therapy.
    da Silva AX; Crispim VR
    Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 76.