These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 17500564)

  • 1. Hierarchy of supramolecular synthons: persistent hydroxyl...pyridine hydrogen bonds in cocrystals that contain a cyano acceptor.
    Bis JA; Vishweshwar P; Weyna D; Zaworotko MJ
    Mol Pharm; 2007; 4(3):401-16. PubMed ID: 17500564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.
    Babu NJ; Reddy LS; Nangia A
    Mol Pharm; 2007; 4(3):417-34. PubMed ID: 17497888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxamide-pyridine N-oxide heterosynthon for crystal engineering and pharmaceutical cocrystals.
    Reddy LS; Babu NJ; Nangia A
    Chem Commun (Camb); 2006 Apr; (13):1369-71. PubMed ID: 16550269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of supramolecular structures in crystals on parallel stacking interactions between pyridine molecules.
    Janjić GV; Ninković DB; Zarić SD
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2013 Aug; 69(Pt 4):389-94. PubMed ID: 23873064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cocrystal of 3-hydroxy-2-naphthoic acid and 4,4'-bipyridine.
    Lou BY; Huang XD; Lin XC
    Acta Crystallogr C; 2006 Jun; 62(Pt 6):o310-1. PubMed ID: 16763312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal Engineering of Ionic Cocrystals Sustained by Azolium···Azole Heterosynthons.
    Rahmani M; Kumar V; Bruno-Colmenarez J; Zaworotko MJ
    Pharmaceutics; 2022 Oct; 14(11):. PubMed ID: 36365138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmaceutical Cocrystals of Ethenzamide: Molecular Structure Analysis Based on Vibrational Spectra and DFT Calculations.
    Wan M; Fang J; Xue J; Liu J; Qin J; Hong Z; Li J; Du Y
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients.
    Vishweshwar P; McMahon JA; Peterson ML; Hickey MB; Shattock TR; Zaworotko MJ
    Chem Commun (Camb); 2005 Sep; (36):4601-3. PubMed ID: 16158128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of two series of 1:1 cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine and carboxylic acids.
    Rajam A; Muthiah PT; Butcher RJ; Jasinski JP; Wikaira J
    Acta Crystallogr C Struct Chem; 2018 Sep; 74(Pt 9):1007-1019. PubMed ID: 30191892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural diversity and supramolecular aggregation in calcium, strontium, and barium salicylates incorporating 1,10-phenanthroline and 4,4'-bipyridine: probing the softer side of group 2 metal ions with pyridinic ligands.
    Murugavel R; Korah R
    Inorg Chem; 2007 Dec; 46(26):11048-62. PubMed ID: 18047324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the structural motifs and packing arrangements of six novel derivatives and one polymorph of 2-(1-phenyl-1H-1,2,3-triazol-4-yl)pyridine.
    Tawfiq KM; Miller GJ; Al-Jeboori MJ; Fennell PS; Coles SJ; Tizzard GJ; Wilson C; Potgieter H
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Apr; 70(Pt 2):379-89. PubMed ID: 24675607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical stability enhancement of theophylline via cocrystallization.
    Trask AV; Motherwell WD; Jones W
    Int J Pharm; 2006 Aug; 320(1-2):114-23. PubMed ID: 16769188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular medicinal chemistry: mixed-ligand coordination complexes.
    Ma Z; Moulton B
    Mol Pharm; 2007; 4(3):373-85. PubMed ID: 17497887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of salt and cocrystal structures--does a proton position matter?
    Mohamed S; Tocher DA; Price SL
    Int J Pharm; 2011 Oct; 418(2):187-98. PubMed ID: 21497185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular architectures in two 1:1 cocrystals of 5-fluorouracil with 5-bromothiophene-2-carboxylic acid and thiophene-2-carboxylic acid.
    Mohana M; Thomas Muthiah P; McMillen CD
    Acta Crystallogr C Struct Chem; 2017 Jun; 73(Pt 6):481-485. PubMed ID: 28579571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular hydrogen-bonding patterns in 1:1 cocrystals of 5-fluorouracil with 4-methylbenzoic acid and 3-nitrobenzoic acid.
    Mohana M; Muthiah PT; McMillen CD
    Acta Crystallogr C Struct Chem; 2017 Mar; 73(Pt 3):259-263. PubMed ID: 28257022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfa drugs as model cocrystal formers.
    Caira MR
    Mol Pharm; 2007; 4(3):310-6. PubMed ID: 17477545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cocrystal nicotinamide-succinic acid (2/1).
    Thompson LJ; Voguri RS; Cowell A; Male L; Tremayne M
    Acta Crystallogr C; 2010 Aug; 66(Pt 8):o421-4. PubMed ID: 20679721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-crystals of caffeine and hydroxy-2-naphthoic acids: unusual formation of the carboxylic acid dimer in the presence of a heterosynthon.
    Bucar DK; Henry RF; Lou X; Duerst RW; Borchardt TB; MacGillivray LR; Zhang GG
    Mol Pharm; 2007; 4(3):339-46. PubMed ID: 17489605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isostructural materials achieved by using structurally equivalent donors and acceptors in halogen-bonded cocrystals.
    Cincić D; Friscić T; Jones W
    Chemistry; 2008; 14(2):747-53. PubMed ID: 17955560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.