These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17500573)

  • 1. Spatially resolved product formation in the reaction of formic acid with calcium carbonate (1014): the role of step density and adsorbed water-assisted ion mobility.
    Usher CR; Baltrusaitis J; Grassian VH
    Langmuir; 2007 Jun; 23(13):7039-45. PubMed ID: 17500573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: a Knudsen cell reactor, FTIR and SEM study.
    Al-Hosney HA; Carlos-Cuellar S; Baltrusaitis J; Grassian VH
    Phys Chem Chem Phys; 2005 Oct; 7(20):3587-95. PubMed ID: 16294235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface.
    Baltrusaitis J; Usher CR; Grassian VH
    Phys Chem Chem Phys; 2007 Jun; 9(23):3011-24. PubMed ID: 17551626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of microcrystals, micropuddles, and other spatial inhomogenieties in surface reactions under ambient conditions: an atomic force microscopy study of water and nitric acid adsorption on MgO(100) and CaCO3(104).
    Krueger BJ; Ross JL; Grassian VH
    Langmuir; 2005 Sep; 21(19):8793-801. PubMed ID: 16142962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.
    Wastl DS; Judmann M; Weymouth AJ; Giessibl FJ
    ACS Nano; 2015; 9(4):3858-65. PubMed ID: 25816927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-induced reconstruction that affects mobile ions on the surface of calcite.
    Kendall TA; Martin ST
    J Phys Chem A; 2007 Jan; 111(3):505-14. PubMed ID: 17228899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilities of crystal faces of aragonite (CaCO3) compared by atomic force microscopic observation of facet formation processes in aqueous acetic acid.
    Shindo H; Kwak M
    Phys Chem Chem Phys; 2005 Feb; 7(4):691-6. PubMed ID: 19787887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divalent Cd and Pb uptake on calcite {1014} cleavage faces: an XPS and AFM study.
    Chada VG; Hausner DB; Strongin DR; Rouff AA; Reeder RJ
    J Colloid Interface Sci; 2005 Aug; 288(2):350-60. PubMed ID: 15927599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.
    Ren D; Li Z; Gao Y; Feng Q
    Biomed Mater; 2010 Oct; 5(5):055009. PubMed ID: 20844320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of Protein Nanofibrils Orchestrates Calcite Step Movement through Selective Nonchiral Interactions.
    So CR; Liu J; Fears KP; Leary DH; Golden JP; Wahl KJ
    ACS Nano; 2015 Jun; 9(6):5782-91. PubMed ID: 25970003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.
    Xue Z; Hu B; Dai S; Du Z
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():506-11. PubMed ID: 26117783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.
    Walters DA; Smith BL; Belcher AM; Paloczi GT; Stucky GD; Morse DE; Hansma PK
    Biophys J; 1997 Mar; 72(3):1425-33. PubMed ID: 9138588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium carbonate mineralization: X-ray microdiffraction probing of the interface of an evaporating drop on a superhydrophobic surface.
    Accardo A; Burghammer M; Di Cola E; Reynolds M; Di Fabrizio E; Riekel C
    Langmuir; 2011 Jul; 27(13):8216-22. PubMed ID: 21663321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning-induced growth on single crystal calcite with an atomic force microscope.
    McEvoy AL; Stevens F; Langford SC; Dickinson JT
    Langmuir; 2006 Aug; 22(16):6931-8. PubMed ID: 16863241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eu3+ uptake by calcite: preliminary results from coprecipitation experiments and observations with surface-sensitive techniques.
    Stipp SL; Lakshtanov LZ; Jensen JT; Baker JA
    J Contam Hydrol; 2003 Mar; 61(1-4):33-43. PubMed ID: 12598092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a lipopeptide biosurfactant on the precipitation of calcium carbonate.
    Bastrzyk A; Fiedot-Toboła M; Polowczyk I; Legawiec K; Płaza G
    Colloids Surf B Biointerfaces; 2019 Feb; 174():145-152. PubMed ID: 30448711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcite microneedle arrays produced by inorganic ion-assisted anisotropic dissolution of bulk calcite crystal.
    Long X; Meng R; Wu W; Ma Y; Yang D; Qi L
    Chemistry; 2014 Apr; 20(15):4264-72. PubMed ID: 24644237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic and nanoscale study of wettability alteration of oil-wet calcite surface in presence of magnesium and sulfate ions.
    Karoussi O; Hamouda AA
    J Colloid Interface Sci; 2008 Jan; 317(1):26-34. PubMed ID: 17931645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy and X-ray photoelectron spectroscopy study of NO2 reactions on CaCO3 (1014) surfaces in humid environments.
    Baltrusaitis J; Grassian VH
    J Phys Chem A; 2012 Sep; 116(36):9001-9. PubMed ID: 22845863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits.
    Miyata K; Takeuchi K; Kawagoe Y; Spijker P; Tracey J; Foster AS; Fukuma T
    J Phys Chem Lett; 2021 Aug; 12(33):8039-8045. PubMed ID: 34402624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.