These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Matter, energy, and heat transfer in a classical ballistic atom pump. Byrd TA; Das KK; Mitchell KA; Aubin S; Delos JB Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052107. PubMed ID: 25493740 [TBL] [Abstract][Full Text] [Related]
4. Mechanical equivalent of quantum heat engines. Arnaud J; Chusseau L; Philippe F Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061102. PubMed ID: 18643212 [TBL] [Abstract][Full Text] [Related]
6. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior. Bizarro JP; Rodrigues P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051109. PubMed ID: 23214740 [TBL] [Abstract][Full Text] [Related]
7. Intrinsic irreversibility limits the efficiency of multidimensional molecular motors. Jack MW; Tumlin C Phys Rev E; 2016 May; 93(5):052109. PubMed ID: 27300832 [TBL] [Abstract][Full Text] [Related]
8. Generalized Einstein relation in tilted periodic potential: a semiclassical approach. Shit A; Chattopadhyay S; Banik SK; Chaudhuri JR J Phys Chem B; 2010 Jun; 114(23):7854-63. PubMed ID: 20481540 [TBL] [Abstract][Full Text] [Related]
9. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Feldmann T; Kosloff R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016101. PubMed ID: 12935194 [TBL] [Abstract][Full Text] [Related]
10. Realization of a Brownian engine to study transport phenomena: a semiclassical approach. Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061112. PubMed ID: 20866383 [TBL] [Abstract][Full Text] [Related]
11. Quantum thermodynamic cycles and quantum heat engines. Quan HT; Liu YX; Sun CP; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197 [TBL] [Abstract][Full Text] [Related]
12. Efficiency at maximum power of a heat engine working with a two-level atomic system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385 [TBL] [Abstract][Full Text] [Related]
13. Energy current magnification in coupled oscillator loops. Marathe R; Dhar A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031117. PubMed ID: 21230035 [TBL] [Abstract][Full Text] [Related]
14. Particle-exchange heat engine working between bosonic and fermionic reservoirs. Li P; Jia B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):062104. PubMed ID: 21797424 [TBL] [Abstract][Full Text] [Related]
15. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related]
16. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Gelbwaser-Klimovsky D; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684 [TBL] [Abstract][Full Text] [Related]
17. Work exchange between quantum systems: the spin-oscillator model. Schröder H; Mahler G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021118. PubMed ID: 20365541 [TBL] [Abstract][Full Text] [Related]
18. Quantum heat engines and refrigerators: continuous devices. Kosloff R; Levy A Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798 [TBL] [Abstract][Full Text] [Related]
19. Quantum thermodynamic cycles and quantum heat engines. II. Quan HT Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041129. PubMed ID: 19518195 [TBL] [Abstract][Full Text] [Related]