These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17500720)

  • 1. Nonlinear finite-element analysis of nanoindentation of viral capsids.
    Gibbons MM; Klug WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031901. PubMed ID: 17500720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional simulation of nanoindentation response of viral capsids. Shape and size effects.
    Ahadi A; Colomo J; Evilevitch A
    J Phys Chem B; 2009 Mar; 113(11):3370-8. PubMed ID: 19243104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of nonuniform geometry on nanoindentation of viral capsids.
    Gibbons MM; Klug WS
    Biophys J; 2008 Oct; 95(8):3640-9. PubMed ID: 18621831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength.
    Michel JP; Ivanovska IL; Gibbons MM; Klug WS; Knobler CM; Wuite GJ; Schmidt CF
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6184-9. PubMed ID: 16606825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of viral capsids.
    Zandi R; Reguera D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021917. PubMed ID: 16196614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale.
    Roos WH; Gibbons MM; Arkhipov A; Uetrecht C; Watts NR; Wingfield PT; Steven AC; Heck AJ; Schulten K; Klug WS; Wuite GJ
    Biophys J; 2010 Aug; 99(4):1175-81. PubMed ID: 20713001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids.
    Ahadi A; Johansson D; Evilevitch A
    J Biol Phys; 2013 Mar; 39(2):183-99. PubMed ID: 23860868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral capsid equilibrium dynamics reveals nonuniform elastic properties.
    May ER; Aggarwal A; Klug WS; Brooks CL
    Biophys J; 2011 Jun; 100(11):L59-61. PubMed ID: 21641297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoindentation of virus capsids in a molecular model.
    Cieplak M; Robbins MO
    J Chem Phys; 2010 Jan; 132(1):015101. PubMed ID: 20078182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic modulus of viral nanotubes.
    Zhao Y; Ge Z; Fang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031914. PubMed ID: 18851072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplay between mechanics and stability of viral cages.
    Hernando-Pérez M; Pascual E; Aznar M; Ionel A; Castón JR; Luque A; Carrascosa JL; Reguera D; de Pablo PJ
    Nanoscale; 2014 Mar; 6(5):2702-9. PubMed ID: 24452242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical limits of viral capsids.
    Buenemann M; Lenz P
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):9925-30. PubMed ID: 17545309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic properties and mechanical stability of chiral and filled viral capsids.
    Buenemann M; Lenz P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051924. PubMed ID: 19113172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasticity theory and shape transitions of viral shells.
    Nguyen TT; Bruinsma RF; Gelbart WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051923. PubMed ID: 16383661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts.
    Wilts BD; Schaap IAT; Schmidt CF
    Biophys J; 2015 May; 108(10):2541-2549. PubMed ID: 25992732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural transitions and energy landscape for Cowpea Chlorotic Mottle Virus capsid mechanics from nanomanipulation in vitro and in silico.
    Kononova O; Snijder J; Brasch M; Cornelissen J; Dima RI; Marx KA; Wuite GJ; Roos WH; Barsegov V
    Biophys J; 2013 Oct; 105(8):1893-903. PubMed ID: 24138865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the impact of loading rate on the mechanical properties of viral nanoparticles.
    Snijder J; Ivanovska IL; Baclayon M; Roos WH; Wuite GJ
    Micron; 2012 Dec; 43(12):1343-50. PubMed ID: 22609100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural investigations on native collagen type I fibrils using AFM.
    Strasser S; Zink A; Janko M; Heckl WM; Thalhammer S
    Biochem Biophys Res Commun; 2007 Mar; 354(1):27-32. PubMed ID: 17210119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.