These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 17500809)
1. Short wavelength approximation of a boundary integral operator for homogeneous and isotropic elastic bodies. Tanner G; Søndergaard N Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036607. PubMed ID: 17500809 [TBL] [Abstract][Full Text] [Related]
2. Mode-resolved travel-time statistics for elastic rays in three-dimensional billiards. Ortega A; Stringlo K; Gorin T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036212. PubMed ID: 22587166 [TBL] [Abstract][Full Text] [Related]
3. Wave chaos in the elastic disk. Sondergaard N; Tanner G Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066211. PubMed ID: 12513388 [TBL] [Abstract][Full Text] [Related]
4. Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. Wang C; Feng L; Jasiuk I J Biomech Eng; 2009 Dec; 131(12):121008. PubMed ID: 20524731 [TBL] [Abstract][Full Text] [Related]
5. Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method. Wu Y; Lu YY J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2444-51. PubMed ID: 19884946 [TBL] [Abstract][Full Text] [Related]
6. A linear discretization of the volume conductor boundary integral equation using analytically integrated elements. de Munck JC IEEE Trans Biomed Eng; 1992 Sep; 39(9):986-90. PubMed ID: 1473829 [TBL] [Abstract][Full Text] [Related]
7. Boundary integral equations in elastodynamics of interface cracks. Menshykov OV; Guz IA; Menshykov VA Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1835-9. PubMed ID: 18218600 [TBL] [Abstract][Full Text] [Related]
8. Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction. Wu Y; Lu YY J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1191-6. PubMed ID: 21643404 [TBL] [Abstract][Full Text] [Related]
9. Determination of second-order elliptic operators in two dimensions from partial Cauchy data. Imanuvilov OY; Uhlmann G; Yamamoto M Proc Natl Acad Sci U S A; 2011 Jan; 108(2):467-72. PubMed ID: 21187423 [TBL] [Abstract][Full Text] [Related]
10. Bound states in elastic waveguides. Maksimov DN; Sadreev AF Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016201. PubMed ID: 16907171 [TBL] [Abstract][Full Text] [Related]
11. Intermediate periodic "saddle-splay" nematic phase in the vicinity of a nematic-smectic-A transition. Barbero G; Pergamenshchik VM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051706. PubMed ID: 12513502 [TBL] [Abstract][Full Text] [Related]
12. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory. Fried E; Gurtin ME Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056306. PubMed ID: 17677163 [TBL] [Abstract][Full Text] [Related]
13. Fundamental boundary matrices for 36 elementary boundary value problems of finite beam deflection on elastic foundation. Choi SW Math Biosci Eng; 2023 Jun; 20(8):13704-13753. PubMed ID: 37679108 [TBL] [Abstract][Full Text] [Related]
14. Derivation and implementation of the boundary integral formula for the convective acoustic wave equation in time domain. Lee YW; Lee DJ J Acoust Soc Am; 2014 Dec; 136(6):2959. PubMed ID: 25480045 [TBL] [Abstract][Full Text] [Related]
15. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory. Bardhan JP J Chem Phys; 2008 Oct; 129(14):144105. PubMed ID: 19045132 [TBL] [Abstract][Full Text] [Related]
16. Modeling electrocortical activity through improved local approximations of integral neural field equations. Coombes S; Venkov NA; Shiau L; Bojak I; Liley DT; Laing CR Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051901. PubMed ID: 18233681 [TBL] [Abstract][Full Text] [Related]
17. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations. Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of third-order elastic constants using laser-generated multi-type ultrasound for isotropic materials. Dong LM; Lomonosov AM; Shen ZH; Li J; Ni CY; Ni XW Ultrasonics; 2013 Aug; 53(6):1079-83. PubMed ID: 23522685 [TBL] [Abstract][Full Text] [Related]
19. A first-order k-space model for elastic wave propagation in heterogeneous media. Firouzi K; Cox BT; Treeby BE; Saffari N J Acoust Soc Am; 2012 Sep; 132(3):1271-83. PubMed ID: 22978855 [TBL] [Abstract][Full Text] [Related]
20. Third-order implementation and convergence of the strong-property-fluctuation theory in electromagnetic homogenization. Mackay TG; Lakhtakia A; Weiglhofer WS Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066616. PubMed ID: 11736305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]