These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17500826)

  • 1. Accurate numerical solutions of the time-dependent Schrödinger equation.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036707. PubMed ID: 17500826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient explicit numerical solutions of the time-dependent Schrödinger equation.
    van Dijk W
    Phys Rev E; 2022 Feb; 105(2-2):025303. PubMed ID: 35291168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact transparent boundary condition for the three-dimensional Schrödinger equation in a rectangular cuboid computational domain.
    Feshchenko RM; Popov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053308. PubMed ID: 24329380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials.
    van Dijk W; Toyama FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency and accuracy of numerical solutions to the time-dependent Schrödinger equation.
    van Dijk W; Brown J; Spyksma K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056703. PubMed ID: 22181543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical solutions of the time-dependent Schrödinger equation in two dimensions.
    van Dijk W; Vanderwoerd T; Prins SJ
    Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization.
    Shao H; Wang Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056705. PubMed ID: 19518591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling considerations for an applied nonlinear Schrödinger equation.
    Pitts TA; Laine MR; Schwarz J; Rambo PK; Hautzenroeder BM; Karelitz DB
    Appl Opt; 2015 Feb; 54(6):1426-35. PubMed ID: 25968209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of the space dependent fractional Schrödinger equation for London dispersion potential type.
    Al-Raeei M; El-Daher MS
    Heliyon; 2020 Jul; 6(7):e04495. PubMed ID: 32715142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solution of the time-dependent Schrödinger equation for H_{2}^{+} ion with application to high-harmonic generation and above-threshold ionization.
    Fetić B; Milošević DB
    Phys Rev E; 2017 May; 95(5-1):053309. PubMed ID: 28618485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann schemes for the nonlinear Schrödinger equation.
    Zhong L; Feng S; Dong P; Gao S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036704. PubMed ID: 17025783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave packet spreading and localization in electron-nuclear scattering.
    Grabowski PE; Markmann A; Morozov IV; Valuev IA; Fichtl CA; Richards DF; Batista VS; Graziani FR; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063104. PubMed ID: 23848786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation.
    Wells D; Quiney H
    Sci Rep; 2019 Jan; 9(1):782. PubMed ID: 30692569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crank-Nicolson method for solving uncertain heat equation.
    Liu J; Hao Y
    Soft comput; 2022; 26(3):937-945. PubMed ID: 35002501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary-free propagation with the time-dependent Schrodinger equation.
    Sidky EY; Esry BD
    Phys Rev Lett; 2000 Dec; 85(24):5086-9. PubMed ID: 11102192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations.
    Zhou Y; Luo Z
    J Inequal Appl; 2018; 2018(1):137. PubMed ID: 30137734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filter method without boundary-value condition for simultaneous calculation of eigenfunction and eigenvalue of a stationary Schrödinger equation on a grid.
    Nurhuda M; Rouf A
    Phys Rev E; 2017 Sep; 96(3-1):033302. PubMed ID: 29346866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical time-dependent solutions of the Schrödinger equation with piecewise continuous potentials.
    van Dijk W
    Phys Rev E; 2016 Jun; 93(6):063307. PubMed ID: 27415387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of numerical approaches to the solution of the time-dependent Schrödinger equation in one dimension.
    Gharibnejad H; Schneider BI; Leadingham M; Schmale HJ
    Comput Phys Commun; 2020; 252():. PubMed ID: 33132403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.