These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17500878)

  • 1. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models.
    Berhan L; Sastry AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041120. PubMed ID: 17500878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling percolation in high-aspect-ratio fiber systems. II. The effect of waviness on the percolation onset.
    Berhan L; Sastry AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041121. PubMed ID: 17500879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale modeling of electrical percolation in fiber-filled systems.
    Rahatekar SS; Hamm M; Shaffer MS; Elliott JA
    J Chem Phys; 2005 Oct; 123(13):134702. PubMed ID: 16223321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity percolation in suspensions of attractive square-well spherocylinders.
    Dixit M; Meyer H; Schilling T
    Phys Rev E; 2016 Jan; 93(1):012116. PubMed ID: 26871033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The viability and limitations of percolation theory in modeling the electrical behavior of carbon nanotube-polymer composites.
    Xu S; Rezvanian O; Peters K; Zikry MA
    Nanotechnology; 2013 Apr; 24(15):155706. PubMed ID: 23519025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Percolation probability in a system of cylindrical particles.
    Golovnev A; Suss ME
    J Chem Phys; 2018 Oct; 149(14):144904. PubMed ID: 30316292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring.
    Soto M; Esteva M; Martínez-Romero O; Baez J; Elías-Zúñiga A
    Materials (Basel); 2015 Sep; 8(10):6697-6718. PubMed ID: 28793594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast off-lattice Monte Carlo simulations of soft-core spherocylinders: isotropic-nematic transition and comparisons with virial expansion.
    Zong J; Zhang X; Wang Q
    J Chem Phys; 2012 Oct; 137(13):134904. PubMed ID: 23039610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectedness percolation in isotropic systems of monodisperse spherocylinders.
    Chatterjee AP
    J Phys Condens Matter; 2015 Sep; 27(37):375302. PubMed ID: 26325334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasiuniversal connectedness percolation of polydisperse rod systems.
    Nigro B; Grimaldi C; Ryser P; Chatterjee AP; van der Schoot P
    Phys Rev Lett; 2013 Jan; 110(1):015701. PubMed ID: 23383806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity percolation in suspensions of hard platelets.
    Mathew M; Schilling T; Oettel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061407. PubMed ID: 23005096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical percolation of hard-core ellipsoids of revolution in the continuum.
    Akagawa S; Odagaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051402. PubMed ID: 18233654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of Percolation Threshold, Tunneling Distance, and Conductivity for Carbon Nanotube (CNT)-Reinforced Nanocomposites Assuming Effective CNT Concentration.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.
    Spanos P; Elsbernd P; Ward B; Koenck T
    Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120494. PubMed ID: 23690646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectedness percolation of hard deformed rods.
    Drwenski T; Dussi S; Dijkstra M; van Roij R; van der Schoot P
    J Chem Phys; 2017 Dec; 147(22):224904. PubMed ID: 29246051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and the percolation behavior of a mixture of carbon nanotubes and molecular junctions: a Monte Carlo simulation study.
    Kwon G; Jung HT; Shin K; Sung BJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4317-23. PubMed ID: 21780449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets.
    Oskouyi AB; Sundararaj U; Mertiny P
    Materials (Basel); 2014 Mar; 7(4):2501-2521. PubMed ID: 28788580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolation in suspensions of polydisperse hard rods: Quasi universality and finite-size effects.
    Meyer H; van der Schoot P; Schilling T
    J Chem Phys; 2015 Jul; 143(4):044901. PubMed ID: 26233158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuum percolation of congruent overlapping spherocylinders.
    Xu W; Su X; Jiao Y
    Phys Rev E; 2016 Sep; 94(3-1):032122. PubMed ID: 27739717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Electrical Percolation to optimize the Electromechanical Properties of CNT/Polymer Composites in Highly Stretchable Fiber Strain Sensors.
    Jung S; Choi HW; Mocanu FC; Shin DW; Chowdhury MF; Han SD; Suh YH; Cho Y; Lee H; Fan X; Bang SY; Zhan S; Yang J; Hou B; Chun YT; Lee S; Occhipinti LG; Kim JM
    Sci Rep; 2019 Dec; 9(1):20376. PubMed ID: 31889155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.