These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 17500983)
1. Turing patterns in three dimensions. Shoji H; Yamada K; Ueyama D; Ohta T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046212. PubMed ID: 17500983 [TBL] [Abstract][Full Text] [Related]
2. Interconnected Turing patterns in three dimensions. Shoji H; Yamada K; Ohta T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):065202. PubMed ID: 16486001 [TBL] [Abstract][Full Text] [Related]
3. Computer simulations of three-dimensional Turing patterns in the Lengyel-Epstein model. Shoji H; Ohta T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032913. PubMed ID: 25871178 [TBL] [Abstract][Full Text] [Related]
4. Stability of Turing patterns in the Brusselator model. Peña B; Pérez-García C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056213. PubMed ID: 11736060 [TBL] [Abstract][Full Text] [Related]
5. conditions for Turing and wave instabilities in reaction-diffusion systems. Villar-Sepúlveda E; Champneys AR J Math Biol; 2023 Jan; 86(3):39. PubMed ID: 36708385 [TBL] [Abstract][Full Text] [Related]
6. Turing pattern formation in the Brusselator system with nonlinear diffusion. Gambino G; Lombardo MC; Sammartino M; Sciacca V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267 [TBL] [Abstract][Full Text] [Related]
7. Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation. Kuznetsov M; Kolobov A; Polezhaev A Phys Rev E; 2017 May; 95(5-1):052208. PubMed ID: 28618630 [TBL] [Abstract][Full Text] [Related]
8. Morphological transitions and bistability in Turing systems. Leppänen T; Karttunen M; Barrio RA; Kaski K Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066202. PubMed ID: 15697479 [TBL] [Abstract][Full Text] [Related]
9. Why Turing mechanism is an obstacle to stationary periodic patterns in bounded reaction-diffusion media with advection. Yochelis A; Sheintuch M Phys Chem Chem Phys; 2010 Apr; 12(16):3957-60. PubMed ID: 20379487 [TBL] [Abstract][Full Text] [Related]
10. Turing pattern formation in fractional activator-inhibitor systems. Henry BI; Langlands TA; Wearne SL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638 [TBL] [Abstract][Full Text] [Related]
11. Fddd structure in AB-type diblock copolymers. Yamada K; Nonomura M; Ohta T J Phys Condens Matter; 2006 Aug; 18(32):L421-7. PubMed ID: 21690855 [TBL] [Abstract][Full Text] [Related]
12. Stable squares and other oscillatory turing patterns in a reaction-diffusion model. Yang L; Zhabotinsky AM; Epstein IR Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455 [TBL] [Abstract][Full Text] [Related]
13. Turing patterns in a network-reduced FitzHugh-Nagumo model. Carletti T; Nakao H Phys Rev E; 2020 Feb; 101(2-1):022203. PubMed ID: 32168659 [TBL] [Abstract][Full Text] [Related]
14. Transverse instabilities in chemical Turing patterns of stripes. Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870 [TBL] [Abstract][Full Text] [Related]
15. Statistical approach for parameter identification by Turing patterns. Kazarnikov A; Haario H J Theor Biol; 2020 Sep; 501():110319. PubMed ID: 32416093 [TBL] [Abstract][Full Text] [Related]
17. Localized stationary and traveling reaction-diffusion patterns in a two-layer A+B→ oscillator system. Budroni MA; De Wit A Phys Rev E; 2016 Jun; 93(6):062207. PubMed ID: 27415255 [TBL] [Abstract][Full Text] [Related]
18. From Turing patterns to chimera states in the 2D Brusselator model. Provata A Chaos; 2023 Mar; 33(3):033133. PubMed ID: 37003796 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling. Burić N; Todorović D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066222. PubMed ID: 16241341 [TBL] [Abstract][Full Text] [Related]
20. Entropy production in a two-dimensional reversible Gray-Scott system. Mahara H; Yamaguchi T; Shimomura M Chaos; 2005 Dec; 15(4):047508. PubMed ID: 16396601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]