These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 17500997)
1. Influence of wettability conditions on slow evaporation in two-dimensional porous media. Chapuis O; Prat M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046311. PubMed ID: 17500997 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Influence of contact angle on slow evaporation in two-dimensional porous media. Chraïbi H; Prat M; Chapuis O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026313. PubMed ID: 19391846 [TBL] [Abstract][Full Text] [Related]
4. Analytical solutions of drying in porous media for gravity-stabilized fronts. Yiotis AG; Salin D; Tajer ES; Yortsos YC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046308. PubMed ID: 22680575 [TBL] [Abstract][Full Text] [Related]
5. Drying patterns of porous media containing wettability contrasts. Shokri N; Or D J Colloid Interface Sci; 2013 Feb; 391():135-41. PubMed ID: 23123032 [TBL] [Abstract][Full Text] [Related]
6. Characteristic lengths affecting evaporative drying of porous media. Lehmann P; Assouline S; Or D Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056309. PubMed ID: 18643163 [TBL] [Abstract][Full Text] [Related]
7. Evaporation and capillary coupling across vertical textural contrasts in porous media. Lehmann P; Or D Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046318. PubMed ID: 19905447 [TBL] [Abstract][Full Text] [Related]
8. Experimental investigation of water distribution in a two-phase zone during gravity-dominated evaporation. Cejas CM; Castaing JC; Hough L; Frétigny C; Dreyfus R Phys Rev E; 2017 Dec; 96(6-1):062908. PubMed ID: 29347312 [TBL] [Abstract][Full Text] [Related]
9. Drying of capillary porous media with a stabilized front in two dimensions. Prat M; Bouleux F Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5647-56. PubMed ID: 11970458 [TBL] [Abstract][Full Text] [Related]
10. Pore-scale modelling and tomographic visualisation of drying in granular media. Kohout M; Grof Z; Stepánek F J Colloid Interface Sci; 2006 Jul; 299(1):342-51. PubMed ID: 16513128 [TBL] [Abstract][Full Text] [Related]
11. Evaporation versus imbibition in a porous medium. Van Engeland C; Haut B; Spreutels L; Sobac B J Colloid Interface Sci; 2020 Sep; 576():280-290. PubMed ID: 32438102 [TBL] [Abstract][Full Text] [Related]
12. Effect of liquid films on the isothermal drying of porous media. Yiotis AG; Boudouvis AG; Stubos AK; Tsimpanogiannis IN; Yortsos YC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):037303. PubMed ID: 14524931 [TBL] [Abstract][Full Text] [Related]
13. Pore-scale network model for three-phase flow in mixed-wet porous media. van Dijke MI; Sorbie KS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046302. PubMed ID: 12443317 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous Imbibition and Evaporation in Rocks at the Nanometer Scale. Wensink G; Schröer L; Dell HP; Cnudde V; Rücker M Energy Fuels; 2023 Dec; 37(23):18713-18721. PubMed ID: 38094911 [TBL] [Abstract][Full Text] [Related]
15. Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres. Wang C; Wang Q; Wang T Langmuir; 2010 Dec; 26(23):18357-61. PubMed ID: 21067141 [TBL] [Abstract][Full Text] [Related]
16. Drying in porous media with gravity-stabilized fronts: experimental results. Yiotis AG; Salin D; Tajer ES; Yortsos YC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026310. PubMed ID: 23005857 [TBL] [Abstract][Full Text] [Related]
17. Slow invasion of a fluid from multiple inlet sources in a thin porous layer: influence of trapping and wettability. Ceballos L; Prat M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043005. PubMed ID: 23679511 [TBL] [Abstract][Full Text] [Related]
19. Single layer porous media with entrapped minerals for microscale studies of multiphase flow. Liefferink RW; Naillon A; Bonn D; Prat M; Shahidzadeh N Lab Chip; 2018 Mar; 18(7):1094-1104. PubMed ID: 29504009 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Piri M; Blunt MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]