These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17501017)

  • 1. Wetting condition in diffuse interface simulations of contact line motion.
    Ding H; Spelt PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046708. PubMed ID: 17501017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants.
    Zhang J; Liu H; Ba Y
    Langmuir; 2019 Jun; 35(24):7858-7870. PubMed ID: 31120757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A geometric diffuse-interface method for droplet spreading.
    Holm DD; Náraigh LÓ; Tronci C
    Proc Math Phys Eng Sci; 2020 Jan; 476(2233):20190222. PubMed ID: 32082051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann simulations of multiple-droplet interaction dynamics.
    Zhou W; Loney D; Fedorov AG; Degertekin FL; Rosen DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033311. PubMed ID: 24730971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On multiscale moving contact line theory.
    Li S; Fan H
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150224. PubMed ID: 26345090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally activated depinning motion of contact lines in pseudopartial wetting.
    Du L; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012402. PubMed ID: 25122310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of flow field and geometry on the dynamic contact angle.
    Lukyanov AV; Shikhmurzaev YD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051604. PubMed ID: 17677075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicomponent and multiphase modeling and simulation of reactive wetting.
    Villanueva W; Grönhagen K; Amberg G; Agren J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056313. PubMed ID: 18643167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces.
    Huang JJ; Wu J; Huang H
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations.
    Taherian F; Marcon V; Bonaccurso E; van der Vegt NFA
    J Colloid Interface Sci; 2016 Oct; 479():189-198. PubMed ID: 27388133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.
    Janeček V; Nikolayev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012404. PubMed ID: 23410341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis.
    Brabcova Z; McHale G; Wells GG; Brown CV; Newton MI; Edwards AM
    Langmuir; 2016 Oct; 32(42):10844-10850. PubMed ID: 27690464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.