These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 17501057)
1. Refuting the odd-number limitation of time-delayed feedback control. Fiedler B; Flunkert V; Georgi M; Hövel P; Schöll E Phys Rev Lett; 2007 Mar; 98(11):114101. PubMed ID: 17501057 [TBL] [Abstract][Full Text] [Related]
2. Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control. Postlethwaite CM; Silber M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056214. PubMed ID: 18233746 [TBL] [Abstract][Full Text] [Related]
3. Delayed feedback control of the Lorenz system: an analytical treatment at a subcritical Hopf bifurcation. Pyragas V; Pyragas K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036215. PubMed ID: 16605639 [TBL] [Abstract][Full Text] [Related]
4. Beyond the odd number limitation: a bifurcation analysis of time-delayed feedback control. Just W; Fiedler B; Georgi M; Flunkert V; Hövel P; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026210. PubMed ID: 17930124 [TBL] [Abstract][Full Text] [Related]
5. Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems. Postlethwaite CM; Brown G; Silber M Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120467. PubMed ID: 23960225 [TBL] [Abstract][Full Text] [Related]
6. Effect of delay mismatch in Pyragas feedback control. Purewal AS; Postlethwaite CM; Krauskopf B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052905. PubMed ID: 25493856 [TBL] [Abstract][Full Text] [Related]
7. An odd-number limitation of extended time-delayed feedback control in autonomous systems. Amann A; Hooton EW Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120463. PubMed ID: 23960221 [TBL] [Abstract][Full Text] [Related]
8. Analytical limitation for time-delayed feedback control in autonomous systems. Hooton EW; Amann A Phys Rev Lett; 2012 Oct; 109(15):154101. PubMed ID: 23102310 [TBL] [Abstract][Full Text] [Related]
9. Odd-number theorem: optical feedback control at a subcritical Hopf bifurcation in a semiconductor laser. Schikora S; Wünsche HJ; Henneberger F Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026203. PubMed ID: 21405892 [TBL] [Abstract][Full Text] [Related]
10. Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation. Pyragas K; Pyragas V; Benner H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056222. PubMed ID: 15600743 [TBL] [Abstract][Full Text] [Related]
11. Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser. Fiedler B; Yanchuk S; Flunkert V; Hövel P; Wünsche HJ; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066207. PubMed ID: 18643350 [TBL] [Abstract][Full Text] [Related]
12. Time-delayed feedback control design beyond the odd-number limitation. Pyragas K; Novičenko V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012903. PubMed ID: 23944534 [TBL] [Abstract][Full Text] [Related]
13. Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling. Choe CU; Flunkert V; Hövel P; Benner H; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046206. PubMed ID: 17500977 [TBL] [Abstract][Full Text] [Related]
14. Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation. Schneider I Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120472. PubMed ID: 23960230 [TBL] [Abstract][Full Text] [Related]
15. Geometric invariance of determining and resonating centers: Odd- and any-number limitations of Pyragas control. de Wolff B; Schneider I Chaos; 2021 Jun; 31(6):063125. PubMed ID: 34241316 [TBL] [Abstract][Full Text] [Related]
16. Relation between the extended time-delayed feedback control algorithm and the method of harmonic oscillators. Pyragas V; Pyragas K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022925. PubMed ID: 26382493 [TBL] [Abstract][Full Text] [Related]
17. Delayed feedback control of forced self-sustained oscillations. Pyragiene T; Pyragas K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026203. PubMed ID: 16196680 [TBL] [Abstract][Full Text] [Related]
18. Analytical properties and optimization of time-delayed feedback control. Pyragas K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026207. PubMed ID: 12241267 [TBL] [Abstract][Full Text] [Related]
19. Systematic experimental exploration of bifurcations with noninvasive control. Barton DA; Sieber J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052916. PubMed ID: 23767607 [TBL] [Abstract][Full Text] [Related]
20. Towards easier realization of time-delayed feedback control of odd-number orbits. Flunkert V; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016214. PubMed ID: 21867280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]