These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 17501088)
1. Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé lattice. Ran Y; Hermele M; Lee PA; Wen XG Phys Rev Lett; 2007 Mar; 98(11):117205. PubMed ID: 17501088 [TBL] [Abstract][Full Text] [Related]
2. Gapless spin liquids on the three-dimensional hyperkagome lattice of Na4Ir3O8. Lawler MJ; Paramekanti A; Kim YB; Balents L Phys Rev Lett; 2008 Nov; 101(19):197202. PubMed ID: 19113300 [TBL] [Abstract][Full Text] [Related]
3. Striped spin liquid crystal ground state instability of kagome antiferromagnets. Clark BK; Kinder JM; Neuscamman E; Chan GK; Lawler MJ Phys Rev Lett; 2013 Nov; 111(18):187205. PubMed ID: 24237558 [TBL] [Abstract][Full Text] [Related]
4. Weak ferromagnetic exchange and anomalous specific heat in ZnCu3(OH)6Cl2. Ma O; Marston JB Phys Rev Lett; 2008 Jul; 101(2):027204. PubMed ID: 18764223 [TBL] [Abstract][Full Text] [Related]
5. Field-induced freezing of a quantum spin liquid on the kagome lattice. Jeong M; Bert F; Mendels P; Duc F; Trombe JC; de Vries MA; Harrison A Phys Rev Lett; 2011 Dec; 107(23):237201. PubMed ID: 22182120 [TBL] [Abstract][Full Text] [Related]
6. Nature of the spin-liquid ground state of the S=1/2 Heisenberg model on the kagome lattice. Depenbrock S; McCulloch IP; Schollwöck U Phys Rev Lett; 2012 Aug; 109(6):067201. PubMed ID: 23006298 [TBL] [Abstract][Full Text] [Related]
7. Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4-x(OD)6Cl2. Lee SH; Kikuchi H; Qiu Y; Lake B; Huang Q; Habicht K; Kiefer K Nat Mater; 2007 Nov; 6(11):853-7. PubMed ID: 17721540 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Fu M; Imai T; Han TH; Lee YS Science; 2015 Nov; 350(6261):655-8. PubMed ID: 26542565 [TBL] [Abstract][Full Text] [Related]
9. Possible Superconductivity with a Bogoliubov Fermi Surface in a Lightly Doped Kagome U(1) Spin Liquid. Jiang YF; Yao H; Yang F Phys Rev Lett; 2021 Oct; 127(18):187003. PubMed ID: 34767423 [TBL] [Abstract][Full Text] [Related]
10. Constructing a gapless spin-liquid state for the spin-1/2 J(1)-J(2) Heisenberg model on a square lattice. Wang L; Poilblanc D; Gu ZC; Wen XG; Verstraete F Phys Rev Lett; 2013 Jul; 111(3):037202. PubMed ID: 23909355 [TBL] [Abstract][Full Text] [Related]
11. Dirac fermions and flat bands in the ideal kagome metal FeSn. Kang M; Ye L; Fang S; You JS; Levitan A; Han M; Facio JI; Jozwiak C; Bostwick A; Rotenberg E; Chan MK; McDonald RD; Graf D; Kaznatcheev K; Vescovo E; Bell DC; Kaxiras E; van den Brink J; Richter M; Prasad Ghimire M; Checkelsky JG; Comin R Nat Mater; 2020 Feb; 19(2):163-169. PubMed ID: 31819211 [TBL] [Abstract][Full Text] [Related]
12. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Yan S; Huse DA; White SR Science; 2011 Jun; 332(6034):1173-6. PubMed ID: 21527676 [TBL] [Abstract][Full Text] [Related]
13. Dynamic scaling in the susceptibility of the spin-1/2 kagome lattice antiferromagnet herbertsmithite. Helton JS; Matan K; Shores MP; Nytko EA; Bartlett BM; Qiu Y; Nocera DG; Lee YS Phys Rev Lett; 2010 Apr; 104(14):147201. PubMed ID: 20481955 [TBL] [Abstract][Full Text] [Related]
14. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Liu Z; Li M; Wang Q; Wang G; Wen C; Jiang K; Lu X; Yan S; Huang Y; Shen D; Yin JX; Wang Z; Yin Z; Lei H; Wang S Nat Commun; 2020 Aug; 11(1):4002. PubMed ID: 32778641 [TBL] [Abstract][Full Text] [Related]
15. Nature of intermediate magnetization plateaus of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice resembling a triangulated kagome lattice. Strečka J; Ekiz C Phys Rev E; 2020 Jul; 102(1-1):012132. PubMed ID: 32794906 [TBL] [Abstract][Full Text] [Related]
16. Entanglement signatures of emergent Dirac fermions: Kagome spin liquid and quantum criticality. Zhu W; Chen X; He YC; Witczak-Krempa W Sci Adv; 2018 Nov; 4(11):eaat5535. PubMed ID: 30511016 [TBL] [Abstract][Full Text] [Related]
17. Variational study of the quantum phase transition in the bilayer Heisenberg model with bosonic RVB wavefunction. Liao H; Li T J Phys Condens Matter; 2011 Nov; 23(47):475602. PubMed ID: 22076047 [TBL] [Abstract][Full Text] [Related]
19. Unveiling the physics of the doped phase of the t - J model on the kagome lattice. Guertler S; Monien H Phys Rev Lett; 2013 Aug; 111(9):097204. PubMed ID: 24033068 [TBL] [Abstract][Full Text] [Related]
20. Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2. Janson O; Richter J; Rosner H Phys Rev Lett; 2008 Sep; 101(10):106403. PubMed ID: 18851233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]