These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17501202)

  • 21. Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe.
    Shilnikov A; Cymbalyuk G
    Phys Rev Lett; 2005 Feb; 94(4):048101. PubMed ID: 15783604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leydig neuron activity modulates heartbeat in the medicinal leech.
    Arbas EA; Calabrese RL
    J Comp Physiol A; 1990 Nov; 167(5):665-71. PubMed ID: 2074550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hyperpolarization-activated inward current in heart interneurons of the medicinal leech.
    Angstadt JD; Calabrese RL
    J Neurosci; 1989 Aug; 9(8):2846-57. PubMed ID: 2769368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms.
    Olsen OH; Calabrese RL
    J Neurosci; 1996 Aug; 16(16):4958-70. PubMed ID: 8756427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics and diversity in interneurons: a model exploration with slowly inactivating potassium currents.
    Saraga F; Skinner FK
    Neuroscience; 2002; 113(1):193-203. PubMed ID: 12123697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide-mediated glial responses to leydig neuron activity in the leech central nervous system.
    Schmidt J; Deitmer JW
    Eur J Neurosci; 1999 Sep; 11(9):3125-33. PubMed ID: 10510176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic analysis of a rhythmic neural circuit in the leech Hirudo medicinalis.
    Peterson EL; Calabrese RL
    J Neurophysiol; 1982 Feb; 47(2):256-71. PubMed ID: 7062099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
    Norris BJ; Weaver AL; Wenning A; GarcĂ­a PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2983-91. PubMed ID: 17728387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region.
    Hsiao CF; Gougar K; Asai J; Chandler SH
    J Neurosci Res; 2007 Dec; 85(16):3673-86. PubMed ID: 17668857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium-dependent plateau potentials in cultured Retzius cells of the medicinal leech.
    Angstadt JD; Choo JJ
    J Neurophysiol; 1996 Sep; 76(3):1491-502. PubMed ID: 8890269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission.
    Ivanov AI; Calabrese RL
    J Neurosci; 2000 Jul; 20(13):4930-43. PubMed ID: 10864951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple spike initiation zones in a neuron implicated in learning in the leech: a computational model.
    Crisp KM
    Invert Neurosci; 2009 Mar; 9(1):1-10. PubMed ID: 19142677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of bursting in a thalamic neuron model.
    Rush ME; Rinzel J
    Biol Cybern; 1994; 71(4):281-91. PubMed ID: 7948220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
    Britz FC; Lohr C; Schmidt J; Deitmer JW
    Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional role of Ca2+ currents in graded and spike-mediated synaptic transmission between leech heart interneurons.
    Lu J; Dalton JF; Stokes DR; Calabrese RL
    J Neurophysiol; 1997 Apr; 77(4):1779-94. PubMed ID: 9114236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Six types of multistability in a neuronal model based on slow calcium current.
    Malashchenko T; Shilnikov A; Cymbalyuk G
    PLoS One; 2011; 6(7):e21782. PubMed ID: 21814554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of GABAB-receptor-mediated K+ current in thalamocortical relay neurons: tonic firing, bursting, and oscillations.
    Wallenstein GV
    Biol Cybern; 1994; 71(3):271-80. PubMed ID: 7918804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two types of K+ channels in excised patches of somatic membrane of the leech AP neuron.
    Pellegrini M; Simoni A; Pellegrino M
    Brain Res; 1989 Apr; 483(2):294-300. PubMed ID: 2706522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.