These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17501287)

  • 1. Fano lineshape and phonon softening in single isolated metallic carbon nanotubes.
    Nguyen KT; Gaur A; Shim M
    Phys Rev Lett; 2007 Apr; 98(14):145504. PubMed ID: 17501287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption.
    Shim M; Ozel T; Gaur A; Wang C
    J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly.
    Farhat H; Son H; Samsonidze GG; Reich S; Dresselhaus MS; Kong J
    Phys Rev Lett; 2007 Oct; 99(14):145506. PubMed ID: 17930687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the electron-phonon coupling of individual single-walled carbon nanotubes.
    Oron-Carl M; Hennrich F; Kappes MM; Löhneysen HV; Krupke R
    Nano Lett; 2005 Sep; 5(9):1761-7. PubMed ID: 16159220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of covalent defects on phonon softening in metallic carbon nanotubes.
    Nguyen KT; Shim M
    J Am Chem Soc; 2009 May; 131(20):7103-6. PubMed ID: 19415892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable electron-phonon coupling in isolated metallic carbon nanotubes observed by Raman scattering.
    Wu Y; Maultzsch J; Knoesel E; Chandra B; Huang M; Sfeir MY; Brus LE; Hone J; Heinz TF
    Phys Rev Lett; 2007 Jul; 99(2):027402. PubMed ID: 17678258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-energy phonon branches of an individual metallic carbon nanotube.
    Maultzsch J; Reich S; Schlecht U; Thomsen C
    Phys Rev Lett; 2003 Aug; 91(8):087402. PubMed ID: 14525277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Softening of the radial breathing mode in metallic carbon nanotubes.
    Farhat H; Sasaki K; Kalbac M; Hofmann M; Saito R; Dresselhaus MS; Kong J
    Phys Rev Lett; 2009 Mar; 102(12):126804. PubMed ID: 19392307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manifestation of Kohn anomaly in 1/f fluctuations in metallic carbon nanotubes.
    Back JH; Tsai CL; Kim S; Mohammadi S; Shim M
    Phys Rev Lett; 2009 Nov; 103(21):215501. PubMed ID: 20366051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fano resonances in the midinfrared spectra of single-walled carbon nanotubes.
    Lapointe F; Gaufrès E; Tremblay I; Tang NY; Martel R; Desjardins P
    Phys Rev Lett; 2012 Aug; 109(9):097402. PubMed ID: 23002881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes.
    Rao AM; Chen J; Richter E; Schlecht U; Eklund PC; Haddon RC; Venkateswaran UD; Kwon YK; Tománek D
    Phys Rev Lett; 2001 Apr; 86(17):3895-8. PubMed ID: 11329351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano-Type Wavelength-Dependent Asymmetric Raman Line Shapes from MoS
    Tanwar M; Bansal L; Rani C; Rani S; Kandpal S; Ghosh T; Pathak DK; Sameera I; Bhatia R; Kumar R
    ACS Phys Chem Au; 2022 Sep; 2(5):417-422. PubMed ID: 36855687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic polymers of C(60) inside single-walled carbon nanotubes.
    Pichler T; Kuzmany H; Kataura H; Achiba Y
    Phys Rev Lett; 2001 Dec; 87(26):267401. PubMed ID: 11800854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroelectrochemistry of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of the Fano resonance in a temperature dependent Raman study of CaCu3Ti4O12 and SrCu3Ti4O12.
    Mishra DK; Sathe VG
    J Phys Condens Matter; 2012 Jun; 24(25):252202. PubMed ID: 22635438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon softening in metallic nanotubes by a Peierls-like mechanism.
    Dubay O; Kresse G; Kuzmany H
    Phys Rev Lett; 2002 Jun; 88(23):235506. PubMed ID: 12059378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators.
    Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E
    Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal optical phonons in metallic and semiconducting carbon nanotubes.
    Fouquet M; Telg H; Maultzsch J; Wu Y; Chandra B; Hone J; Heinz TF; Thomsen C
    Phys Rev Lett; 2009 Feb; 102(7):075501. PubMed ID: 19257684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Raman resonance behavior of single-walled carbon nanotubes via covalent functionalization.
    Mevellec JY; Bergeret C; Cousseau J; Buisson JP; Ewels CP; Lefrant S
    J Am Chem Soc; 2011 Oct; 133(42):16938-46. PubMed ID: 21923167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.