BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17501292)

  • 1. Mechanism for nanotube formation from self-bending nanofilms driven by atomic-scale surface-stress imbalance.
    Zang J; Huang M; Liu F
    Phys Rev Lett; 2007 Apr; 98(14):146102. PubMed ID: 17501292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface effects on the self equilibrium, self bending and symmetry lowering of nanofilms.
    Li J; Han M; Li L; Gao Z; Zhang H
    Sci Rep; 2019 Nov; 9(1):16959. PubMed ID: 31740805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of SiGe buffer in growth and relaxation of Ge on free-standing Si(001) nano-pillars.
    Zaumseil P; Kozlowski G; Schubert MA; Yamamoto Y; Bauer J; Schülli TU; Tillack B; Schroeder T
    Nanotechnology; 2012 Sep; 23(35):355706. PubMed ID: 22894894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism.
    Zhang Z; Zeng XC; Guo W
    J Am Chem Soc; 2011 Sep; 133(37):14831-8. PubMed ID: 21834534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimony-mediated control of misfit dislocations and strain at the highly lattice mismatched GaSb/GaAs interface.
    Wang Y; Ruterana P; Chen J; Kret S; El Kazzi S; Genevois C; Desplanque L; Wallart X
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9760-4. PubMed ID: 24024581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total reflection X-ray topography for the observation of misfit dislocation strain at the surface of a Si/Ge-Si heterostructure.
    McNally PJ; Dilliway G; Bonar JM; Willoughby A; Tuomi T; Rantamäki R; Danilewsky AN; Lowney D
    J Xray Sci Technol; 2001 Jan; 9(3):121-30. PubMed ID: 22388563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular-dynamics studies of bending mechanical properties of empty and C60-filled carbon nanotubes under nanoindentation.
    Jeng YR; Tsai PC; Fang TH
    J Chem Phys; 2005 Jun; 122(22):224713. PubMed ID: 15974709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-Layer Assembly of Free-Standing Nanofilms by Controlled Rolling.
    Kang S; Pyo JB; Kim TS
    Langmuir; 2018 May; 34(20):5831-5836. PubMed ID: 29708348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.
    Konduri S; Mukherjee S; Nair S
    ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly ordered freestanding titanium oxide nanotube arrays using Si-containing block copolymer lithography and atomic layer deposition.
    Ku SJ; Jo GC; Bak CH; Kim SM; Shin YR; Kim KH; Kwon SH; Kim JB
    Nanotechnology; 2013 Mar; 24(8):085301. PubMed ID: 23376893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled growth of semiconductor nanofilms within TiO₂ nanotubes for nanofilm sensitized solar cells.
    Zheng X; Yu D; Xiong FQ; Li M; Yang Z; Zhu J; Zhang WH; Li C
    Chem Commun (Camb); 2014 Apr; 50(33):4364-7. PubMed ID: 24643140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of Ni2Si pseudoepitaxial transrotational structures on [001] Si.
    Alberti A; Bongiorno C; Alippi P; La Magna A; Spinella C; Rimini E
    Acta Crystallogr B; 2006 Oct; 62(Pt 5):729-36. PubMed ID: 16983153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of Ge nanofilms using electrochemical atomic layer deposition, with a "bait and switch" surface-limited reaction.
    Liang X; Zhang Q; Lay MD; Stickney JL
    J Am Chem Soc; 2011 Jun; 133(21):8199-204. PubMed ID: 21539385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties.
    Feng C; Zhang J; He Y; Zhong C; Hu W; Liu L; Deng Y
    ACS Nano; 2015 Feb; 9(2):1730-9. PubMed ID: 25611212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations.
    Morin SA; Bierman MJ; Tong J; Jin S
    Science; 2010 Apr; 328(5977):476-80. PubMed ID: 20413496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure, energetics and thermal evolution of SiGe nanotubes.
    Liu X; Cheng D; Cao D
    Nanotechnology; 2009 Aug; 20(31):315705. PubMed ID: 19597260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusually high flexibility of graphene-Cu nanolayered composites under bending.
    Zhao Y; Liu X; Zhu J; Luo SN
    Phys Chem Chem Phys; 2019 Aug; 21(31):17393-17399. PubMed ID: 31359012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostressors and the nanomechanical response of a thin silicon film on an insulator.
    Liu F; Huang M; Rugheimer PP; Savage DE; Lagally MG
    Phys Rev Lett; 2002 Sep; 89(13):136101. PubMed ID: 12225041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germanium coating boosts lithium uptake in Si nanotube battery anodes.
    Haro M; Song T; Guerrero A; Bertoluzzi L; Bisquert J; Paik U; Garcia-Belmonte G
    Phys Chem Chem Phys; 2014 Sep; 16(33):17930-5. PubMed ID: 25046732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.