These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17501333)

  • 1. An all-optical trap for a gram-scale mirror.
    Corbitt T; Chen Y; Innerhofer E; Müller-Ebhardt H; Ottaway D; Rehbein H; Sigg D; Whitcomb S; Wipf C; Mavalvala N
    Phys Rev Lett; 2007 Apr; 98(15):150802. PubMed ID: 17501333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK.
    Corbitt T; Wipf C; Bodiya T; Ottaway D; Sigg D; Smith N; Whitcomb S; Mavalvala N
    Phys Rev Lett; 2007 Oct; 99(16):160801. PubMed ID: 17995232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust single-beam optical trap for a gram-scale mechanical oscillator.
    Altin PA; Nguyen TT; Slagmolen BJJ; Ward RL; Shaddock DA; McClelland DE
    Sci Rep; 2017 Nov; 7(1):14546. PubMed ID: 29109531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping and cooling a mirror to its quantum mechanical ground state.
    Bhattacharya M; Meystre P
    Phys Rev Lett; 2007 Aug; 99(7):073601. PubMed ID: 17930894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical mirror trap with a large field of view.
    Pitzek M; Steiger R; Thalhammer G; Bernet S; Ritsch-Marte M
    Opt Express; 2009 Oct; 17(22):19414-23. PubMed ID: 19997161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A; Mackowski JM; Michel C; Pinard L; Français O; Rousseau L
    Phys Rev Lett; 2006 Sep; 97(13):133601. PubMed ID: 17026032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scattering-free optical levitation of a cavity mirror.
    Guccione G; Hosseini M; Adlong S; Johnsson MT; Hope J; Buchler BC; Lam PK
    Phys Rev Lett; 2013 Nov; 111(18):183001. PubMed ID: 24237512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror.
    Bhattacharya M; Meystre P
    Phys Rev Lett; 2007 Oct; 99(15):153603. PubMed ID: 17995165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.
    David G; Esat K; Hartweg S; Cremer J; Chasovskikh E; Signorell R
    J Chem Phys; 2015 Apr; 142(15):154506. PubMed ID: 25903896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation-pressure cooling and optomechanical instability of a micromirror.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A
    Nature; 2006 Nov; 444(7115):71-4. PubMed ID: 17080085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral migration of an elastic capsule by optical force in a uniform flow.
    Chang CB; Huang WX; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066306. PubMed ID: 23368037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blinking Optical Tweezers for microrheology measurements of weak elasticity complex fluids.
    Pesce G; Rusciano G; Sasso A
    Opt Express; 2010 Feb; 18(3):2116-26. PubMed ID: 20174040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooling of a Gram-Scale Cantilever Flexure to 70 mK with a Servo-Modified Optical Spring.
    Mow-Lowry CM; Mullavey AJ; Gossler S; Gray MB; McClelland DE
    Phys Rev Lett; 2008 Jan; 100(1):010801. PubMed ID: 18232749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Young's modulus and thermal expansion of amorphous titania-doped tantala films.
    Abernathy MR; Hough J; Martin IW; Rowan S; Oyen M; Linn C; Faller JE
    Appl Opt; 2014 May; 53(15):3196-202. PubMed ID: 24922204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavity cooling of a microlever.
    Metzger CH; Karrai K
    Nature; 2004 Dec; 432(7020):1002-5. PubMed ID: 15616555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Background-free fluorescence detection of cold atoms in a two-color magneto-optical trap.
    Yang B; Liang Q; He J; Wang J
    Opt Express; 2012 May; 20(11):11944-52. PubMed ID: 22714180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning force sensing at micrometer distances from a conductive surface with nanospheres in an optical lattice.
    Montoya C; Alejandro E; Eom W; Grass D; Clarisse N; Witherspoon A; Geraci AA
    Appl Opt; 2022 Apr; 61(12):3486-3493. PubMed ID: 35471446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Negative" backaction noise in interferometric detection of a microlever.
    Laurent J; Mosset A; Arcizet O; Chevrier J; Huant S; Sellier H
    Phys Rev Lett; 2011 Jul; 107(5):050801. PubMed ID: 21867055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude.
    Lindballe TB; Kristensen MV; Berg-Sørensen K; Keiding SR; Stapelfeldt H
    Opt Express; 2013 Jan; 21(2):1986-96. PubMed ID: 23389179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.