These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17501449)

  • 1. Elucidation of the electronic structure of semiconducting single-walled carbon nanotubes by electroabsorption spectroscopy.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2007 Apr; 98(16):166805. PubMed ID: 17501449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the exciton binding energy in single-walled carbon nanotubes.
    Wang Z; Pedrosa H; Krauss T; Rothberg L
    Phys Rev Lett; 2006 Feb; 96(4):047403. PubMed ID: 16486895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.
    Umari P; Petrenko O; Taioli S; De Souza MM
    J Chem Phys; 2012 May; 136(18):181101. PubMed ID: 22583270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of dark excitons in micelle-wrapped single-wall carbon nanotubes.
    Kishida H; Nagasawa Y; Imamura S; Nakamura A
    Phys Rev Lett; 2008 Mar; 100(9):097401. PubMed ID: 18352747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes.
    Korovyanko OJ; Sheng CX; Vardeny ZV; Dalton AB; Baughman RH
    Phys Rev Lett; 2004 Jan; 92(1):017403. PubMed ID: 14754017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes.
    Spataru CD; Ismail-Beigi S; Capaz RB; Louie SG
    Phys Rev Lett; 2005 Dec; 95(24):247402. PubMed ID: 16384422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes.
    Okada S; Oshiyama A
    Phys Rev Lett; 2003 Nov; 91(21):216801. PubMed ID: 14683326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable band gaps and excitons in doped semiconducting carbon nanotubes made possible by acoustic plasmons.
    Spataru CD; LĂ©onard F
    Phys Rev Lett; 2010 Apr; 104(17):177402. PubMed ID: 20482140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure.
    Sfeir MY; Beetz T; Wang F; Huang L; Huang XM; Huang M; Hone J; O'Brien S; Misewich JA; Heinz TF; Wu L; Zhu Y; Brus LE
    Science; 2006 Apr; 312(5773):554-6. PubMed ID: 16645089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusually large Franz-Keldysh oscillations at ultraviolet wavelengths in single-walled carbon nanotubes.
    Ham MH; Kong BS; Kim WJ; Jung HT; Strano MS
    Phys Rev Lett; 2009 Jan; 102(4):047402. PubMed ID: 19257475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple exciton generation by a single photon in single-walled carbon nanotubes.
    Konabe S; Okada S
    Phys Rev Lett; 2012 Jun; 108(22):227401. PubMed ID: 23003652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.