These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17501491)

  • 1. Methane dissociation on Ni(111): the role of lattice reconstruction.
    Nave S; Jackson B
    Phys Rev Lett; 2007 Apr; 98(17):173003. PubMed ID: 17501491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How is methane formed and oxidized reversibly when catalyzed by Ni-containing methyl-coenzyme M reductase?
    Chen SL; Blomberg MR; Siegbahn PE
    Chemistry; 2012 May; 18(20):6309-15. PubMed ID: 22488738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane dissociation on Ni(111): the effects of lattice motion and relaxation on reactivity.
    Nave S; Jackson B
    J Chem Phys; 2007 Dec; 127(22):224702. PubMed ID: 18081409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations.
    Duin EC; McKee ML
    J Phys Chem B; 2008 Feb; 112(8):2466-82. PubMed ID: 18247503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane dissociation on Ni(111): a new understanding of the lattice effect.
    Tiwari AK; Nave S; Jackson B
    Phys Rev Lett; 2009 Dec; 103(25):253201. PubMed ID: 20366254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane dissociation on Ni(111) and Pt(111): energetic and dynamical studies.
    Nave S; Jackson B
    J Chem Phys; 2009 Feb; 130(5):054701. PubMed ID: 19206983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconstructing F(430): quantum chemical perspectives of biological methanogenesis.
    Ghosh A; Wondimagegn T; Ryeng H
    Curr Opin Chem Biol; 2001 Dec; 5(6):744-50. PubMed ID: 11738187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temperature dependence of methane dissociation on Ni(111) and Pt(111): mixed quantum-classical studies of the lattice response.
    Tiwari AK; Nave S; Jackson B
    J Chem Phys; 2010 Apr; 132(13):134702. PubMed ID: 20387949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dissociation and recombination rates of CH
    Wang W; Zhao Y
    J Chem Phys; 2017 Jul; 147(4):044703. PubMed ID: 28764359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of C-H stretch and bend vibrations in methane activation on Ni(100) and Ni(111).
    Juurlink LB; Smith RR; Killelea DR; Utz AL
    Phys Rev Lett; 2005 May; 94(20):208303. PubMed ID: 16090294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociative chemisorption of methane on Ni and Pt surfaces: mode-specific chemistry and the effects of lattice motion.
    Nave S; Tiwari AK; Jackson B
    J Phys Chem A; 2014 Oct; 118(41):9615-31. PubMed ID: 25153478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural factors influencing linear M-H-M bonding in bis(dialkylphosphino)methane complexes of nickel.
    Tyree WS; Vicic DA; Piccoli PM; Schultz AJ
    Inorg Chem; 2006 Oct; 45(22):8853-5. PubMed ID: 17054341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Ni N-heterocyclic carbene catalyst for C-O bond hydrogenolysis of diphenyl ether: a density functional study.
    Sawatlon B; Wititsuwannakul T; Tantirungrotechai Y; Surawatanawong P
    Dalton Trans; 2014 Dec; 43(48):18123-33. PubMed ID: 25355042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for organometallic intermediates in bacterial methane formation involving the nickel coenzyme F₄₃₀.
    Dey M; Li X; Zhou Y; Ragsdale SW
    Met Ions Life Sci; 2010; 7():71-110. PubMed ID: 20877805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode-specificity and transition state-specific energy redistribution in the chemisorption of CH4 on Ni{100}.
    Sacchi M; Wales DJ; Jenkins SJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15879-87. PubMed ID: 23092950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of limited nickel availability on methane emission from EDTA treated soils: coenzyme M an alternative biomarker for methanogens.
    Pramanik P; Kim PJ
    Chemosphere; 2013 Jan; 90(2):873-6. PubMed ID: 22883109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.