BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 17502267)

  • 1. Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments.
    Sakdapipanich JT
    J Biosci Bioeng; 2007 Apr; 103(4):287-92. PubMed ID: 17502267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of alpha-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments.
    Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Tanaka Y
    Biomacromolecules; 2005; 6(4):1858-63. PubMed ID: 16004421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of alpha-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments.
    Tarachiwin L; Sakdapipanich J; Ute K; Kitayama T; Bamba T; Fukusaki E; Kobayashi A; Tanaka Y
    Biomacromolecules; 2005; 6(4):1851-7. PubMed ID: 16004420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of associated proteins and phospholipids in natural rubber latex.
    Sansatsadeekul J; Sakdapipanich J; Rojruthai P
    J Biosci Bioeng; 2011 Jun; 111(6):628-34. PubMed ID: 21354367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction and characterization of a natural rubber from Euphorbia characias latex.
    Spanò D; Pintus F; Mascia C; Scorciapino MA; Casu M; Floris G; Medda R
    Biopolymers; 2012 Aug; 97(8):589-94. PubMed ID: 22605550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy.
    Liu J; Wu S; Tang Z; Lin T; Guo B; Huang G
    Soft Matter; 2015 Mar; 11(11):2290-9. PubMed ID: 25656324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber.
    Mekkriengkrai D; Ute K; Swiezewska E; Chojnacki T; Tanaka Y; Sakdapipanich JT
    Biomacromolecules; 2004; 5(5):2013-9. PubMed ID: 15360318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of Hevea latex organelle membrane proteins in the rubber biosynthesis activity and regulatory function.
    Wititsuwaannakul D; Rattanapittayaporn A; Koyama T; Wititsuwaannakul R
    Macromol Biosci; 2004 Mar; 4(3):314-23. PubMed ID: 15468222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant role of bacterial undecaprenyl diphosphate (C55-UPP) for rubber synthesis by Hevea latex enzymes.
    Rattanapittayaporn A; Wititsuwannakul D; Wititsuwannakul R
    Macromol Biosci; 2004 Nov; 4(11):1039-52. PubMed ID: 15543542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Analysis of the Terminal Groups in Commercial Hevea Natural Rubber by 2D-NMR with DOSY Filters and Multiple-WET Methods Using Ultrahigh-Field NMR.
    Oouchi M; Ukawa J; Ishii Y; Maeda H
    Biomacromolecules; 2019 Mar; 20(3):1394-1400. PubMed ID: 30753057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield.
    Kongsawadworakul P; Viboonjun U; Romruensukharom P; Chantuma P; Ruderman S; Chrestin H
    Phytochemistry; 2009 Apr; 70(6):730-9. PubMed ID: 19409582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for a Hevea latex lectin-like protein in mediating rubber particle aggregation and latex coagulation.
    Wititsuwannakul R; Pasitkul P; Kanokwiroon K; Wititsuwannakul D
    Phytochemistry; 2008 Jan; 69(2):339-47. PubMed ID: 17897690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation.
    Cabrera FC; Agostini DL; Dos Santos RJ; Guimarães FE; Guerrero AR; Aroca RF; Job AE
    Luminescence; 2014 Dec; 29(8):1047-52. PubMed ID: 24760547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Mechanisms of Natural Rubber Biosynthesis.
    Yamashita S; Takahashi S
    Annu Rev Biochem; 2020 Jun; 89():821-851. PubMed ID: 32228045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interplay of Protein Hydrolysis and Ammonia in the Stability of
    Payungwong N; Sakdapipanich J; Wu J; Ho CC
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial communities in natural rubber coagula during maturation: impacts on technological properties of dry natural rubber.
    Salomez M; Subileau M; Vallaeys T; Santoni S; Bonfils F; Sainte-Beuve J; Intapun J; Granet F; Vaysse L; Dubreucq É
    J Appl Microbiol; 2018 Feb; 124(2):444-456. PubMed ID: 29222942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation.
    Wititsuwannakul R; Rukseree K; Kanokwiroon K; Wititsuwannakul D
    Phytochemistry; 2008 Mar; 69(5):1111-8. PubMed ID: 18226821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-Resolution Fluorescence Imaging of Spatial Organization of Proteins and Lipids in Natural Rubber.
    Wu J; Qu W; Huang G; Wang S; Huang C; Liu H
    Biomacromolecules; 2017 Jun; 18(6):1705-1712. PubMed ID: 28463484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles.
    Rojruthai P; Sakdapipanich JT; Takahashi S; Hyegin L; Noike M; Koyama T; Tanaka Y
    J Biosci Bioeng; 2010 Feb; 109(2):107-14. PubMed ID: 20129092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction and characterization of latex and natural rubber from rubber-bearing plants.
    Buranov AU; Elmuradov BJ
    J Agric Food Chem; 2010 Jan; 58(2):734-43. PubMed ID: 20000314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.